A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies
Abstract
:1. Introduction
2. Types of Biocides by Application
3. Types of Biocides by Nature
4. Types of Nanoparticles Used for Microencapsulation
5. Synthesis and Characterization of Microencapsulated Biocides with Nanoparticles
6. Properties of Microencapsulated Biocides with Nanoparticles
7. Antimicrobial Activity of Biocides
8. Future Research Directions
9. Conclusions
Funding
Conflicts of Interest
References
- Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials 2018, 11, 1154. [Google Scholar] [CrossRef] [PubMed]
- Pais-Correia, A.-M.; Sachse, M.; Guadagnini, S.; Robbiati, V.; Lasserre, R.; Gessain, A.; Gout, O.; Alcover, A.; Thoulouze, M.-I. Biofilm-like extracellularviral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 2010, 16, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Sharma, P.; Vishwamitra, B.; Singh, G. Review on Surface Treatment for Implant Infection via Gentamicin and Antibiotic Releasing Coatings. Coatings 2021, 11, 1006. [Google Scholar] [CrossRef]
- Banerjee, I.; Pangule, R.C.; Kane, R.S. Antifouling Coatings: Recent development sin the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 2011, 23, 690–718. [Google Scholar] [CrossRef] [PubMed]
- Callow, M.E.; Callow, J.A. Marine biofouling: A sticky problem. Biologist 2002, 49, 1–5. [Google Scholar]
- Cao, S.; Wang, J.D.; Chen, H.S.; Chen, D.R. Progress of marine biofouling and antifouling technologies. Chinese SciBull. 2011, 56, 598–612. [Google Scholar] [CrossRef]
- Biocides: Introduction to Regulation, Supply and Use. Available online: https://www.hse.gov.uk/biocides/introduction.htm (accessed on 15 April 2024).
- Stoops, C.A.; Qualls, W.A.; Nguyen, T.T.; Richards, S.L. A Review of Studies Evaluating Insecticide Barrier Treatments for Mosquito Control From 1944 to 2018. Environ. Health Insights 2019, 13, 1178630219859004. [Google Scholar] [CrossRef]
- Dejan, M. Acaricides in modern management of plant-feeding mites. J. Pest Sci. 2012, 85, 395–408. [Google Scholar]
- Rose, M.T.; Cavagnaro, T.R.; Scanlan, C.A.; Rose, T.J.; Vancov, T.; Kimber, S.; Kennedy, I.R.; Kookana, R.S.; Zwieten, L.V. Impact of Herbicides on Soil Biology and Function. Adv. Agron. 2016, 136, 133–220. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y.; Li, C.; Zhou, Z.; Nie, X.; Chen, Y.; Cao, H.; Liu, B.; Zhang, N.; Said, Z.; et al. Biological Stability of Water-Based Cutting Fluids: Progress and Application. Chin. J. Mech. Eng. 2022, 35, 3. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Hwang, B.K. Microbial Fungicides in the Control of Plant Diseases. J. Phytopathol. 2007, 155, 641–653. [Google Scholar] [CrossRef]
- Klátyik, S.; Bohus, P.; Darvas, B.; Székács, A. Authorization and Toxicity of Veterinary Drugs and Plant Protection Products: Residues of the Active Ingredients in Food and Feed and Toxicity Problems Related to Adjuvants. Front. Vet. Sci 2017, 4, 146. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rasheed, P.; Jabbar, K.A.; Mackey, H.R.; Mahmoud, K.A. Recent advancements of nanomaterials as coatings and biocides for the inhibition of sulfate reducing bacteria induced corrosion. Curr. Opin. Chem. Eng. 2019, 25, 35–42. [Google Scholar] [CrossRef]
- Varier, K.M.; Gudeppu, M.; Chinnasamy, A.; Thangarajan, S.; Balasubramanian, J.; Li, Y.; Gajendran, B. Nanoparticles: Antimicrobial Applications and Its Prospects. Adv. Nanostruct. Mater. Environ. Remediat. 2019, 25, 321–355. [Google Scholar]
- Konstantinou, I.K.; Albanis, T.A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. J. Environ. Int. 2004, 30, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Edgea, M.; Allen, S.N.; Turner, D.; Robinson, J.; Seal, K. The enhanced performance of biocidal additives in paints and coatings. Prog. Org. Coat. 2001, 43, 10–17. [Google Scholar] [CrossRef]
- Martinko, K.; Ivanković, S.; Lazarevi´c, B.; Ðermić, E.; Ðermić, D. Control of Early Blight Fungus (Alternaria alternata) in Tomato by Boric and Phenylboronic Acid. Antibiotics 2022, 11, 320. [Google Scholar] [CrossRef] [PubMed]
- Uysal, A. Control of Monilinia blossom and twig blight (Monilinia laxa) by boron, pyroligneous acid and boscalid. J. Plant Pathol. 2023, 106, 211–223. [Google Scholar] [CrossRef]
- Temiz, A.; Alfredsen, G.; Eikenes, M.; Terzıev, N. Decay resistance of wood treated with boric acid and tall oil derivates. Bioresour. Technol. 2008, 99, 2102–2106. [Google Scholar] [CrossRef]
- Gablech, E.; Fohlerová, Z.; Švec, K.; Zaleš, F.; Benada, O.; Kofroňová, O.; Pekárková, J.; Caha, O.; Gablech, I.; Gabriel, J.; et al. Selenium nanoparticles with boron salt-based compound act synergistically against the brown-rot Serpula lacrymans. Int. Biodeterior. Biodegrad. 2022, 169, 105377. [Google Scholar] [CrossRef]
- Palumbo, M.; Palacio, A.M.L.; Navarro, A.; Giraldo, M.P.; Lesar, B. Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material. Constr. Build. Mater. 2017, 139, 531–539. [Google Scholar] [CrossRef]
- Nasirov, M.S.; Yusifova, K.R. Fire Retardant and Fungi Protection Materials for Wood Constructions. J. Pharm. Negat. Results 2023, 14, 1023–1026. [Google Scholar]
- Mohiuddin, S.A.; Kaviti, A.K.; Rao, T.S.; Atchuta, S.R. Experimental assessment of productivity and sustainability of nanoporous Cr-Mn-Fe oxide nanocoating in solar-powered desalination. Process Saf. Environ. Prot. 2022, 162, 61–71. [Google Scholar] [CrossRef]
- Chueangchayaphan, N.; Karrila, S.; Madmaeroh, N.; Yangthong, H. Properties and cost of natural rubber latex foam using biomass ash filler from agarwood pellets. BioResources 2023, 18, 5585–5598. [Google Scholar] [CrossRef]
- Erofeev, V.; Smirnov, V.; Dergunova, A.V.; Bogatov, A.; Letkina, N. Development and Research of Methods to Improve the Biosistability of Building Materials. Mater. Sci. Forum 2019, 974, 305–311. [Google Scholar] [CrossRef]
- Valdebenito-Sanhueza, R.M.; Vargas, V.R.; Pereira, J.C.; Tochetto, N.; Longhi, G.H. Silicon effects in postharvest apple rots in Brazil. In ISHS Acta Horticulturae 1194: VIII International Postharvest Symposium: Enhancing Supply Chain and Consumer Benefits—Ethical and Technological Issues; ISHS Secretariat: Bierbeek, Belgium, 2018. [Google Scholar] [CrossRef]
- Anitha, R.; Brindavathy, R.; Sritharan, N.; Jagathjothi, N.; Priya, R.S.; Yuvaraj, M.; Jaiby, C.; Dhanushkodi, V.; Thirumurugan, T.; Sujatha, K.; et al. Comparative Efficacy of Sodium Metasilicate and Organic Source Combination on Sugarcane (Saccharum officinarum L.) for Reducing the Post-harvest Deterioration Losses. Silicon 2023, 16, 425–434. [Google Scholar] [CrossRef]
- Rayón-Díaz, E.; Birke-Biewendt, A.B.; Velázquez-Estrada, R.; González-Estrada, R.R.; Ramírez-Vázquez, M.; Rosas-Saito, G.; Gutiérrez-Martínez, P. Sodium silicate and chitosan: An alternative for the in vitro control of Colletotrichum gloeosporioides isolated from papaya (Carica papaya L.). Rev. Bio Cienc. 2021, 8, e1059. [Google Scholar] [CrossRef]
- González-Jiménez, V.; Moscoso-Ramírez, P.A.; Ortíz-García, C.F.; Sánchez-Soto, S.; Lara-Viveros, F.M. Preventive and Curative Antifungal Activity of the Sodium Silicate on Postharvest Crown Rot in Banana cv. Enano Gigante. Silicon 2023, 15, 6683–6693. [Google Scholar] [CrossRef]
- Weitbrecht, K.; Schwab, S.; Rupp, C.; Bieler, E.; Dürrenberger, M.; Bleyer, G.; Schumacher, S.; Kassemeyer, H.; Fuchs, R.; Schlücker, E. Microencapsulation—An innovative technique to improve the fungicide efficacy of copper against grapevine downy mildew. Crop Prot. 2021, 139, 105382. [Google Scholar] [CrossRef]
- Gao, F.; Yuan, Z.; Zhang, L.; Peng, Y.; Qian, K.; Zheng, M. Toxic Effects of Copper Fungicides on the Development and Behavior of Zebrafish in Early-Life Stages. Nanomaterials 2023, 13, 2629. [Google Scholar] [CrossRef] [PubMed]
- Freire, P.L.; Albuquerque, A.J.; Farias, I.A.P.; Da Silva, T.G.; Aguiar, J.D.S.; Galembeck, A.; Flores, M.A.P.; Sampaio, F.C.; Stamford, T.C.M.; Rosenblatt, A. Antimicrobial and cytotoxicity evaluation of colloidal chitosan–silver nanoparticles–fluoride nanocomposites. Int. J. Biol. Macromol. 2016, 93, 896–903. [Google Scholar] [CrossRef]
- Clayton, G.E.; Thorn, R.M.S.; Reynolds, D.M. The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water. NPJ Clean Water 2021, 4, 48. [Google Scholar] [CrossRef]
- Wang, L.; Ye, C.; Guo, L.; Chen, C.; Kong, X.; Chen, Y.; Shu, L.; Wang, P.; Yu, X.; Fang, J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. Environ. Sci. Technol. 2021, 55, 9221–9230. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.M.; Elshourbagy, E.M.; Gomaa, N.E. Effect of sodium fluoride plus tricalcium phosphate with and without CO2 laser on remineralization of white spot lesions. Heliyon 2022, 8, e10752. [Google Scholar] [CrossRef]
- Kevane-Campbell, M. Bactericidal Effects of Chlorine and Bacteriophages on Mycobacteria in Conventionally Treated Water. ORBioM 2023, 8. Available online: https://sword.cit.ie/orbiom/2023/posters/8 (accessed on 10 March 2024).
- Yeo, C.I.; Tiekink, T.; Chew, J. Insights into the Antimicrobial Potential of Dithiocarbamate Anions and Metal-Based Species. Inorganics 2021, 9, 48. [Google Scholar] [CrossRef]
- Brycht, M.; Kowalewska, K.; Skrzypek, S.; Mirčeski, V. Electroanalytical Study of Fungicide Bixafen on Paste Electrode Based on the Thermally Reduced Graphene Oxide Synthesized in Air Conditions and its Determination in River Water Samples. Electroanalysis 2022, 35, e202200398. [Google Scholar]
- Maia, F.; Silva, A.; Fernandes, S.; Cunha, A.; Almeida, A.; Tedim, J.; Zheludkevich, M.; Ferreira, M. Incorporation of biocides in nanocapsules for protective coatings used in maritime applications. Chem. Eng. J. 2015, 270, 150–157. [Google Scholar] [CrossRef]
- Walker, K.; Rajput, H.; Murray, A.; Stratton, G.; Murray, G.; He, Q. Fungal Resistance and Leaching Behavior of Wood Treated with Creosote Diluted with a Mixture of Biodiesel and Diesel. Forests 2023, 14, 625. [Google Scholar] [CrossRef]
- Hadi, S.; Suhartati, T.; Noviany, N.; Pandiangan, K.; Yandri, Y.; Simanjuntak, W.; Junaidi, J. Disinfecting activity of some diphenyltin(IV) benzoate derivative compounds. Pure Appl. Chem. 2022, 94, 799–807. [Google Scholar] [CrossRef]
- Ochs, S.M.; Souza, T.M.; Sobrinho, R.; Oliveira, R.; Bernardes, M.C.; Pereira Netto, A.D. Simultaneous evaluation of benzotriazoles, benzothiazoles and benzenesulfonamides in water samples from the impacted urban Jacarepaguá Lagoon System (Rio de Janeiro, Brazil) by liquid chromatography coupled to electrospray tandem mass spectrometry. Sci. Total Environ. 2023, 858, 160033. [Google Scholar] [CrossRef] [PubMed]
- Balbi, T.; Miglioli, A.; Montagna, M.K.; Piazza, D.; Risso, B.; Dumollard, R.; Canesi, L. The biocide triclosan as a potential developmental disruptor in Mytilus early larvae. Environ. Sci. Pollut. Res. 2023, 30, 106342–106354. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, T.; Zhou, Y.; Liu, Z.-F.; Zhang, Y.; Bian, Y.; Feng, X.-S. Triclosan and related compounds in the environment: Recent updates on sources, fates, distribution, analytical extraction, analysis, and removal techniques. Sci. Total Environ. 2023, 870, 161885. [Google Scholar] [CrossRef] [PubMed]
- Alhajjar, R.K.; Roche, K.M.; Techtmann, S.M. Comparative analysis of the mechanism of resistance to silver nanoparticles and the biocide 2,2-Dibromo-3-Nitrilopropionamide. Antimicrob. Agents Chemother. 2022, 66, e0203121. [Google Scholar] [CrossRef]
- Aidarova, S.; Sharipova, A.; Grigoriev, D.; Miller, R.; Seilkhanov, T.; Babayev, A.; Issakhov, M. Analysis of NMR Spectra of Submicro-Containers with Biocide DCOIT. Colloids Interfaces 2020, 4, 56. [Google Scholar] [CrossRef]
- Canal-Raffin, M.; L’Azou, B.; Martinez, B.; Sellier, E.; Fawaz, F.; Robinson, F.; Ohayon-Courtès, C.; Baldi, I.; Cambar, J.; Molimard, M.; et al. Physicochemical characteristics and bronchial epithelial cell cytotoxicity of Folpan 80 WG® and Myco 500®, two commercial forms of folpet. Part. Fibre Toxicol. 2007, 4, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, P. The Control of Microbiological Problems. In Pulp and Paper Industry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–195. [Google Scholar] [CrossRef] [PubMed Central]
- Hao, X.; Zhang, X.; Wang, W.; Liu, W.; Lu, G.; Zheng, W.; Gong, D.; Zhao, H. Controlled release of 1,2-benzisothiazolin-3-one-based anion encapsulated in Mg-Al layered double hydroxides for antibacterial and antifouling applications. Prog. Org. Coat. 2024, 189, 108208. [Google Scholar] [CrossRef]
- Tejaswini, B.; Apet, K.; Patil, A. In vitro efficacy of chemicals and antibiotics against Xanthomonas campestris pv. mangiferaeindicae (Patel) Robbs. Pharma Innov. J. 2023, 12, 3614–3617. [Google Scholar]
- Zhang, X.; Hao, X.; Qiu, S.; Lu, G.; Liu, W.; Wang, L.; Wei, Y.; Chen, B.; Lan, X.; Zhao, H. Efficient capture and release of carboxylated benzisothiazolinone from UiO-66-NH2 for antibacterial and antifouling applications. J. Colloid Interface Sci. 2022, 623, 710–722. [Google Scholar] [CrossRef]
- Park, C.M.; Jeon, S.; Kim, Y.H.; Kim, J.; Choi, S.J.; Shim, I.; Eom, I.C.; Han, S.; Kim, M.S. Sodium dichloroisocyanurate toxicity in rats during a 90-day inhalation toxicity study. Toxicol. Appl. Pharmacol. 2022, 456, 116279. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, M.; Cao, X.; Li, G.; Zhang, D.; Li, M.; Meng, J.; Yin, J.; Yan, B. Chromium (VI) removal from water using cetylpyridinium chloride (CPC)-modified montmorillonite. Sep. Purif. Technol. 2020, 241, 116732. [Google Scholar] [CrossRef]
- Telgi, R.L.; Tirth, A.; Tandon, V.; Chandra, S.; Chaturvedi, R.K. Titanium Dioxide Nanoparticles and Cetylpyridinium Chloride Enriched Glass-Ionomer Restorative Cement: A Comparative Study Assessing Compressive Strength and Antibacterial Activity. J. Clin. Pediatr. Dent. 2019, 43, 42–45. [Google Scholar]
- Villaverde, J.; Posada-Baquero, R.; Rubio-Bellido, M.; Laiz, L.; Saiz-Jimenez, C.; Sanchez-Trujillo, M.A.; Morillo, E. Enhanced Mineralization of Diuron Using a Cyclodextrin-Based Bioremediation Technology. J. Agric. Food Chem. 2012, 60, 9941–9947. [Google Scholar] [CrossRef] [PubMed]
- Brezhnev, A.; Tang, F.; Kwan, C.; Basabrain, M.; Tsoi, J.; Matinlinna, J.; Neelakantan, P.; Leung, K. One-Pot Preparation of Cetylpyridinium Chloride-Containing Nanoparticles for Biofilm Eradication. ACS Appl. Bio Mater. 2023, 6, 1221–1230. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.C.S.; Ugucioni, J.C.; Borges, S.V. Effect of glutaraldehyde/glycerol ratios on the properties of chitosan films. J. Food Process. Preserv. 2021, 45, e15060. [Google Scholar] [CrossRef]
- Giacomazzi, S.; Cochet, N. Environmental impact of diuron transformation: A review. J. Chemosph. 2004, 56, 1021–1032. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; He, Y.; Qin, D. Preparation of iodopropynyl butycarbamate loaded halloysite and its anti-mildew activity. J. Mater. Res. Technol. 2020, 9, 10148–10156. [Google Scholar] [CrossRef]
- Schmidt, S.B.I.; Rodríguez-Rojas, A.; Rolff, J.; Schreiber, F. Biocides used as material preservatives modify rates of de novo mutation and horizontal gene transfer in bacteria. J. Hazard. Mater. 2022, 437, 129280. [Google Scholar] [CrossRef]
- Hart, R.L.; Virgallito, D.R.; Work, D.E. Microencapsulation of Biocides and Antifouling Agents. U.S. Patent 7550200B2, 23 June 2009. [Google Scholar]
- Wallström, E.; Jespersen, H.T.; Schaumburg, K. A new concept for anti-fouling paint for Yachts. Prog. Org. Coat. 2011, 72, 109–114. [Google Scholar] [CrossRef]
- Faÿ, F.; Linossier, I.; Legendre, G.; Vallée-Réhel, K. Micro-Encapsulation and Antifouling Coatings: Development of Poly(lactic acid) Microspheres Containing Bioactive Molecules. Macromol. Symp. 2008, 272, 45–51. [Google Scholar] [CrossRef]
- Carbone-Howell, A.L.; Stebbins, N.D.; Uhrich, K.E. Poly(anhydride-esters) Comprised Exclusively of Naturally Occurring Antimicrobials and EDTA: Antioxidant and Antibacterial Activities. Biomacromolecules 2014, 15, 1889–1895. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Ma, C.; Yang, Y.; Xu, W.; Zhang, G. Biodegradable Polyurethane Carrying Antifoulants for Inhibition of Marine Biofouling. Ind. Eng. Chem. Res. 2014, 53, 12753–12759. [Google Scholar] [CrossRef]
- Pinori, E.; Elwing, H.; Berglin, M. The impact of coating hardness on the anti-barnacle efficacy of an embedded antifouling biocide. Biofouling 2013, 29, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Pandit, C.; Gacem, A.; Alqahtani, M.S.; Bilal, M.; Islam, S.; Hossain, J.M.; Jameel, M. Biologically Derived Gold Nanoparticles and Their Applications. Hindawi Bioinorg. Chem. Appl. 2022, 2022, 8184217. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, M.; Shafique, B.; Rehman, A.; Mehmood, A.; Ali, A.; Zahra, S.; Roobab, U.; Singh, A.; Ibrahim, S.A.; Siddiqui, S. Biocompatible Nanomaterials in Food Science, Technology, and Nutrient Drug Delivery: Recent Developments and Applications. Front. Nutr. 2022, 8, 778155. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.; Kamle, M.; Shukla, S.; Mahato, D.; Chandra, P.; Hwang, S.; Kumar, P.; Huh, Y. Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 2018, 26, 1201–1214. [Google Scholar] [CrossRef]
- Shen, W.; Yan, M.; Wu, S.; Ge, X.; Liu, S.; Du, Y.; Zheng, Y.; Wu, L.; Zhang, Y.; Mao, Y. Chitosan nanoparticles embedded with curcumin and its application in pork antioxidant edible coating. Int. J. Biol. Macromol. 2022, 204, 410–418. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.-H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.-Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Gunawan, C.; Marquis, C.P.; Amal, R.; Sotiriou, G.A.; Rice, S.A.; Harry, E.J. Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS Nano 2017, 11, 3438–3445. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Sooresh, A.; Kwon, H.; Taylor, R.; Pietrantonio, P.; Pine, M.; Sayes, C.M. Surface Functionalization of Silver Nanoparticles: Novel Applications for Insect Vector Control. ACS Appl. Mater. Interfaces 2011, 3, 3779–3787. [Google Scholar] [CrossRef] [PubMed]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Pour, M.M.; Riseh, R.S.; Ranjbar-Karimi, R.; Hassanisaadi, M.; Rahdar, A.; Baino, F. Microencapsulation of Bacillus velezensis Using Alginate-Gum Polymers Enriched with TiO2 and SiO2 Nanoparticles. Micromachines 2022, 13, 1423. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Nooshkam, M.; Zargar, M.; Garavand, F.; Ghosh, S.; Hadidi, M.; Forough, M. Green synthesis of nanomaterials for smart biopolymer packaging: Challenges and outlooks. J. Nanostruct. Chem. 2023, 14, 113–136. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Aidarova, S.B.; Sharipova, A.A.; Issayeva, A.B.; Mutaliyeva, B.Z.; Tleuova, A.B.; Grigoriev, D.O.; Kudasova, D.; Dzhakasheva, M.; Miller, R. Synthesis of submicrocontainers with “green” biocide and study of their antimicrobial activity. Colloids Interfaces 2018, 2, 67. [Google Scholar] [CrossRef]
- Frydenberg, T.; Weinell, C.E.; Dam-Johansen, K.; Wallström, E.; Kiil, S. Characterization and Release Mechanisms of Aerogel-Encapsulated Biocide Crystals for Low-Loading and High-Utilization Antifouling Coatings. ACS Omega 2022, 7, 34824–34838. [Google Scholar] [CrossRef]
- Weiser, J.R.; Saltzman, W.M. Controlled Release for Local Delivery of Drugs: Barriers and Models. J. Control. Release 2014, 190, 664–673. [Google Scholar] [CrossRef]
- Trojer, M.A.; Nordstierna, L.; Bergek, J.; Holmberg, K.; Nydén, M. Use of microcapsules as controlled release devices for coatings. Adv. Colloid Interface Sci. 2015, 222, 18–43. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, N.; Meghwal, M.; Das, K. Microencapsulation: An overview on concepts, methods, properties and applications in foods. Food Front. 2021, 2, 426–442. [Google Scholar] [CrossRef]
- Riseh, R.S.; Hassanisaadi, M.; Vatankhah, M.; Soroush, F.; Varma, R.S. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int. J. Biol. Macromol. 2022, 222 Pt A, 1589–1604. [Google Scholar] [CrossRef]
- Roy, A.; Singh, S.K.; Bajpai, J.; Bajpai, A.K. Controlled pesticide release from biodegradable polymers. Cent. Eur. J. Chem. 2014, 12, 453–469. [Google Scholar] [CrossRef]
- Wellington, J.E.; Shaw, J.M.; Walker, G.J. Influence of growth rate on the relative activities of free and bound dextranase and dextranase inhibitor in continuous cultures of Streptococcus sobrinus. Microbios 1994, 79, 121–129. [Google Scholar]
- Martins, I.M.; Rodrigues, S.N.; Barreiro, M.F.; Rodrigues, A.E. Release of Thyme Oil from Polylactide Microcapsules. Ind. Eng. Chem. Res. 2011, 50, 13752–13761. [Google Scholar] [CrossRef]
- Abbaspourrad, A.; Carroll, N.J.; Kim, S.H.; David, A.; Weitz, D.A. Polymer microcapsules with programmable active release. J. Am. Chem. Soc. 2013, 135, 7744–7750. [Google Scholar] [CrossRef] [PubMed]
- Jyothi, N.V.; Prasanna, P.M.; Sakarkar, S.N.; Prabha, K.S.; Ramaiah, P.S.; Srawan, G.Y. Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 2010, 27, 187–197. [Google Scholar] [CrossRef]
- Paul, S.; Mukherjee, S.; Banerjee, P. Recent advancement in nanomaterial-encapsulated drug delivery vehicles for combating cancer, COVID-19, and HIV-like chronic diseases. Mater. Adv. 2023, 4, 2042–2061. [Google Scholar] [CrossRef]
- Ramburrun, P.; Khan, R.A.; Choonara, Y.E. Design, preparation, and functionalization of nanobiomaterials for enhanced efficacy in current and future biomedical applications. Nanotechnol. Rev. 2022, 11, 1802–1826. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Dey, R.; Chen, Y. Nanomaterials for cancer therapy: Current progress and perspectives. J. Hematol. Oncol. 2021, 14, 85. [Google Scholar] [CrossRef]
- Singh, D.; Patel, K.D.; Venkatesan, R.; Guo, S.; Thakur, V.K. Biopolymer-based nanocomposites for wound healing and tissue engineering applications. Int. J. Biol. Macromol. 2021, 166, 362–381. [Google Scholar] [CrossRef]
- Aidarova, S.B.; Issayeva, A.B.; Sharipova, A.A.; Ibrashev, K.; Gabdullin, M.; Grigoriev, D.O. Synthesis and study of the properties of containers of DCOIT with the polyurea shell. Int. J. Nanotechnol. 2019, 16, 3–11. [Google Scholar] [CrossRef]
Types of Biocides | Application | References |
---|---|---|
Insecticides | Used to kill insects. It is more commonly used in the production of textiles and wood products. | [8] |
Acaricides | Act as tick repellents. | [9] |
Herbicides | Used for vegetation (weeds) destruction. They are used in areas where vegetation can cause problems, such as roadsides and airfields. | [10] |
Bactericides | Used to kill bacteria and in water treatment, for the stabilization of drilling fluids, protection against corrosion, and biodegradation. | [11] |
Antibiotics | Drugs that are used to treat bacteria, not only in medicine, but also in the food and agriculture industries. | [12] |
Fungicides | Used to kill fungi and mold, are applied in agriculture, floriculture, and greenhouses. | [13] |
Zoocides | Used to kill harmful small rodents and birds. | [14] |
Inorganic Biocides | Combination with Components | Used Concentration | Solubility | Application | References |
---|---|---|---|---|---|
Boric acids, Borates |
| 1%, 2%, 8% | water, methanol | Fungicide | [19,20,21,22,23] |
Sodium Dichromate | Nanoporous Cr-Mn-Fe oxide | 15–30% | water | Fungicide | [24,25] |
Ammonium Silicofluoride | Sodium silicate solute | 20% | water | Fungicide, 5% solution | [26,27] |
Sodium metasilicate | Chitosan (51–99%) | 0.18–2% | water | Fungicide | [28,29,30] |
Copper sulfate | CuCaps obtained by microcapsulating a mixture of copper sulfate–copper hydroxide | Copper sulfate (18.84%) and copper hydroxide (3.84%) | water | Bactericide | [31,32] |
Sodium fluoride | Colloidal chitosan–silver nanoparticle–fluoride nanocomposites | 1.025 g/L | water, methanol, ethanol | Fungicide | [33,34] |
Chlorine | UV (99%) | 1 mg/L | water | Fungicide | [35,36] |
Organic Biocides | Characterization | Used Concentration | Solubility | Application | References |
---|---|---|---|---|---|
Dithiocarbamates | ZnCl2 CuCl2 | 10 µg/mL | water, polar organic solvents | Fungicide | [38,39] |
2-Mercaptobenzothiazole | Silica nanoparticles | 20–200 mg/L | water, organic solvents | Biocide | [40,41] |
4-hydroxybenzoate | Diphenyltin (IV) oxide | 5 × 10−4 M | weakly in water, well in alcohols, esters, and ketones | Fungicide | [42,43] |
2,4,4′-trichloro-2′-hydroxy-diphenyl ether | Calcein | 10 µg/L | water | Fungicide | [44,45] |
2,2-Dibromo-3-Nitrilopropionamide | Silver nanoparticles | from 45 to 1.250 mg/L | polyethylene glycol, benzene, ethanol, and other organic solvents, weakly in water | Biocide | [46,47] |
DCOIT | Silica nanoparticles | 10 wt% | organic solvents, weakly in water | Fungicide, bactericide | [48] |
Benzisothiazolinone | Mg-Al layered double-hydroxides (LDH) | 5 wt% | alcohols, weakly in water | Fungicide, bactericide | [49,50] |
Bromo nitropropane diol (Bronopol, Myacide AS) | Copper sulphate (inhibition zone 21.6 mm) | 250 ppm | water, alcohols, acetic acid, diethyl ether, and ethyl acetate, weakly in chloroform, acetone | Bactericide | [51,52] |
Cetylpyridinium chloride | SiO2, TiO2, calcium montmorillonite | 16–128 µg/mL 13.44 mg/g–48.83 mg/g | water, ethanol | Disinfectant | [53,54,55] |
N-3,4-dichIorophenyl-N, N-dimethylurea (Diuron) | Cyclodextrin | 5–15 mg/L | ethanol, acetone | Herbicide | [56,57] |
Glutaraldehyde | Chitosan with glycerol (0, 10, 20, and 30% w/w) | 0.99 mg/150 mL | water, alcohol, ether, other organic solvents | Fungicide, bactericide | [58,59] |
3-iodo-2-propynyl butylcarbamate | Dimethyl sulfoxide | 0.74–2.21 mg/mL | organic solvents | Fungicide, bactericide | [60,61] |
N-cetyl-N,N,N-trimethyl ammonium bromide | Zinc sulphate + oxalic acid. 99.48% | 40 ppm + 25 ppm | Completely soluble acetone | Biocide | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issayeva, A.; Sharipova, A.; Aidarova, S.; Madybekova, G.; Katona, J.; Turganbay, S.; Miller, R. A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies. Colloids Interfaces 2024, 8, 31. https://doi.org/10.3390/colloids8030031
Issayeva A, Sharipova A, Aidarova S, Madybekova G, Katona J, Turganbay S, Miller R. A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies. Colloids and Interfaces. 2024; 8(3):31. https://doi.org/10.3390/colloids8030031
Chicago/Turabian StyleIssayeva, Assem, Altynay Sharipova, Saule Aidarova, Galiya Madybekova, Jaroslav Katona, Seitzhan Turganbay, and Reinhard Miller. 2024. "A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies" Colloids and Interfaces 8, no. 3: 31. https://doi.org/10.3390/colloids8030031
APA StyleIssayeva, A., Sharipova, A., Aidarova, S., Madybekova, G., Katona, J., Turganbay, S., & Miller, R. (2024). A Review of Investigations and Applications of Biocides in Nanomaterials and Nanotechnologies. Colloids and Interfaces, 8(3), 31. https://doi.org/10.3390/colloids8030031