Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Membranes through the Electrospinning Process
2.3. Plasma Polymerization and UV Irradiation
2.4. Characterization
2.4.1. Morphological Characterization
2.4.2. Contact Angle and Surface Tension
2.4.3. Adsorption Capacity
2.4.4. Fourier-Transform Infrared Spectroscopy with Attenuated Total Reflectance (ATR-FTIR)
3. Results and Discussion
3.1. Membrane Morphology
3.2. SEM Analysis
3.3. FTIR Studies
3.4. Membrane Wettability
3.5. Toluene Adsorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kusworo, T.D.; Aryanti, N.; Qudratun; Utomo, D.P. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process. Chem. Eng. J. 2018, 347, 462–471. [Google Scholar] [CrossRef]
- Olajire, A.A. Recent advances on the treatment technology of oil and gas produced water for sustainable energy industry-mechanistic aspects and process chemistry perspectives. Chem. Eng. J. Adv. 2020, 4, 100049. [Google Scholar] [CrossRef]
- Jiménez, S.; Micó, M.M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef] [PubMed]
- Al-Ghouti, M.A.; Al-Kaabi, M.A.; Ashfaq, M.Y.; Da’na, D.A. Produced water characteristics, treatment and reuse: A review. J. Water Process Eng. 2019, 28, 222–239. [Google Scholar] [CrossRef]
- Anjum, H.; Johari, K.; Gnanasundaram, N.; Ganesapillai, M.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. A review on adsorptive removal of oil pollutants (BTEX) from wastewater using carbon nanotubes. J. Mol. Liq. 2019, 277, 1005–1025. [Google Scholar] [CrossRef]
- Clough, S.R. Toluene. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 4, pp. 595–598. [Google Scholar] [CrossRef]
- Halim, N.S.A.; Wirzal, M.D.H.; Hizam, S.M.; Bilad, M.R.; Nordin, N.A.H.M.; Sambudi, N.S.; Putra, Z.A.; Yusoff, A.R.M. Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. J. Environ. Chem. Eng. 2021, 9, 104613. [Google Scholar] [CrossRef]
- Su, R.; Li, S.; Wu, W.; Song, C.; Liu, G.; Yu, Y. Recent progress in electrospun nanofibrous membranes for oil/water separation. Sep. Purif. Technol. 2021, 256, 117790. [Google Scholar] [CrossRef]
- Sagitha, P.; Reshmi, C.R.; Manaf, O.; Sundaran, S.P.; Juraij, K.; Sujith, A. Development of nanocomposite membranes by electrospun nanofibrous materials. In Micro and Nano Technologies, Nanocomposite Membranes for Water and Gas Separation; Sadrzadeh, M., Mohammadi, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 199–218. [Google Scholar] [CrossRef]
- Ramos, S.d.P.; Giaconia, M.A.; Do Marco, J.T.; Paiva, R.d.S.; De Rosso, V.V.; Lemes, A.C.; Egea, M.B.; Assis, M.; Mazzo, T.M.; Longo, E.; et al. Development and Characterization of Electrospun Nanostructures Using Polyethylene Oxide: Potential Means for Incorporation of Bioactive Compounds. Colloids Interfaces 2020, 4, 14. [Google Scholar] [CrossRef]
- Kan, Y.; Salimon, A.I.; Korsunsky, A.M. On the electrospinning of nanostructured collagen-PVA fiber mats. Mater. Today Proc. 2020, 33, 2013–2019. [Google Scholar] [CrossRef]
- Hulupi, M.; Haryadi, H. Synthesis and characterization of electrospinning PVA nanofiber-crosslinked by glutaraldehyde. Mater. Today Proc. 2019, 13, 199–204. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; El-Newehy, M.H.; Aldalbahi, A.; Salem, W.M.; Khattab, T.A. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. J. Environ. Chem. Eng. 2021, 9, 105072. [Google Scholar] [CrossRef]
- Pereira, P.P.; Fernandez, M.; Cimadoro, J.; González, P.S.; Morales, G.M.; Goyanes, S.; Agostini, E. Biohybrid membranes for effective bacterial vehiculation and simultaneous removal of hexavalent chromium (CrVI) and phenol. Appl. Microbiol. Biotechnol. 2021, 105, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Rubio, A.; Ribba, L.; Picón, D.; Candal, R.; Goyanes, S. A Highly Efficient Nanostructured Sorbent of Sulfuric Acid from Ecofriendly Electrospun Poly(vinyl alcohol) Mats. Ind. Eng. Chem. Res. 2022, 61, 2091–2099. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Q.; Korfiatis, G.; Christodoulatos, C.; Wang, H.; Meng, X. Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions. Chem. Eng. J. 2020, 387, 124179. [Google Scholar] [CrossRef]
- Cimadoro, J.; Goyanes, S. Reversible swelling as a strategy in the development of smart membranes from electrospun polyvinyl alcohol nanofiber mats. J. Polym. Sci. 2020, 58, 737–746. [Google Scholar] [CrossRef]
- Torasso, N.; Vergara-Rubio, A.; Rivas-Rojas, P.; Huck-Iriart, C.; Larrañaga, A.; Fernández-Cirelli, A.; Cerveny, S.; Goyanes, S. Enhancing arsenic adsorption via excellent dispersion of iron oxide nanoparticles inside poly(vinyl alcohol) nanofibers. J. Environ. Chem. Eng. 2020, 9, 104664. [Google Scholar] [CrossRef]
- Zhuravlev, I. Sorption Membranes and Filter for Water Purification and Disinfection in Outdoor Conditions. Colloids Interfaces 2019, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Paixão, M.; Vianna, M.; Marques, M. Graphene and graphene nanocomposites for the removal of aromatic organic compounds from the water: Systematic review. Mater. Res. Express 2017, 5, 012002. [Google Scholar] [CrossRef]
- Torasso, N.; Trupp, F.; Arias Durán, A.; D’Accorso, N.; Grondona, D.; Goyanes, S. Superhydrophobic plasma polymerized nanosponge with high oil sorption capacity. Plasma Process Polym. 2019, 16, 1800158. [Google Scholar] [CrossRef]
- Sankaranarayanan, S.; Lakshmi, D.S.; Vivekanandhan, S.; Ngamcharussrivichai, C. Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation. Sustain. Mater. Technol. 2021, 28, e00268. [Google Scholar] [CrossRef]
- Okoro, O.; Lompe, K.; Papineau, I.; Solliec, M.; Fradette, L.; Barbeau, B. Simultaneous powdered activated carbon and coagulant injection during ballasted flocculation for trace benzene removal from diesel and gasoline-contaminated surface waters. J. Water Process Eng. 2021, 40, 101846. [Google Scholar] [CrossRef]
- Anjum, H.; Johari, K.; Appusamy, A.; Gnanasundaram, N.; Thanabalan, M. Surface modification and characterization of carbonaceous adsorbents for the efficient removal of oil pollutants. J. Hazard Mater. 2019, 379, 120673. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.T.; Kim, J.H.; Lee, C.Y.; Koo, S.; Jerng, D.W.; Wongwises, S.; Ahn, H.S. Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability. Sci. Rep. 2019, 9, 10922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Ma, J.; Wang, J.; Zhang, M.; Zheng, J. Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 2016, 146, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Kim, S.J.; Seong, W.K.; Kim, S.H.; Lee, K.R.; Kim, H.Y.; Moon, M.W. Porous carbon nanoparticle networks with tunable absorbability. Sci. Rep. 2013, 3, 2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Durán, A.; Giuliani, L.; D’ Accorso, N.B.; Grondona, D.; Goyanes, S. Thin films of polymerized acetylene by RF discharge and its benzene absorption ability. Surf. Coatings Technol. 2013, 216, 185–190. [Google Scholar] [CrossRef]
- Trupp, F.; Torasso, N.; Grondona, D.; Rubiolo, G.H.; Goyanes, S. Hierarchical selective membranes combining carbonaceous nanoparticles and commercial permeable substrates for oil/water separation. Sep. Purif. Technol. 2020, 234, 116053. [Google Scholar] [CrossRef]
- Fu, J.; Yang, F.; Guo, Z. Fabrication of switchable surface wettability with UV-triggered on cotton fabric. Mater. Lett. 2021, 283, 128767. [Google Scholar] [CrossRef]
- Wei, Y.; Qi, H.; Gong, X.; Zhao, S. Specially Wettable Membranes for Oil–Water Separation. Adv. Mater. Interfaces. 2018, 5, 1800576. [Google Scholar] [CrossRef]
- Picón, D.; Torasso, N.; Baudrit, J.R.V.; Cerveny, S.; Goyanes, S. Bio-inspired membranes for adsorption of arsenic via immobilized L-Cysteine in highly hydrophilic electrospun nanofibers. Chem. Eng. Res. Des. 2022, 185, 108–118. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.A.; Gosavi, P.; Athauda, T.J.; Ozer, R.R. In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater. Lett. 2013, 112, 32–35. [Google Scholar] [CrossRef]
- López-Córdoba, A.; Castro, G.R.; Goyanes, S. A simple green route to obtain poly(vinyl alcohol) electrospun mats with improved water stability for use as potential carriers of drugs. Mater. Sci. Eng. C 2016, 69, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Folorunso, O.; Kumar, N.; Hamam, Y.; Sadiku, R.; Ray, S.S. Facile solvent/drying fabrication of PVA/PPy/rGO: A novel nanocomposite for energy storage applications. Results Mater. 2022, 15, 100295. [Google Scholar] [CrossRef]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Degradation profile of polyethylene after artificial accelerated weathering. Polym. Degrad. Stab. 2003, 79, 385–397. [Google Scholar] [CrossRef]
- Cimadoro, J.; Ribba, L.; Ledesma, S.; Goyanes, S. Electrospun Mats: From White to Transparent with a Drop. Macromol. Mater. Eng. 2018, 303, 1800237. [Google Scholar] [CrossRef]
- Sato, T.; Moriki, K.; Yumoto, M. Refractive Index Control of Polymer Film by Plasma CVD for Designing an Optical Waveguide. IEE J. Trans. Electr. Electron. Eng. 2010, 5, 416–421. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Nettis, E.; Vitale, A. Fluoropolymers for oil/water membrane separation. In Progress in Fluorine Science, Opportunities for Fluoropolymers; Ameduri, B., Fomin, S., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 209–246. [Google Scholar] [CrossRef]
- Negrea, P.; Sidea, F.; Negrea, A.; Lupa, L.; Ciopec, M.; Muntean, C. Studies regarding the Benzene, Toluene and o-Xylene Removal from Waste Water. Chem. Bull. 2008, 53, 144–146. [Google Scholar]
- Kuśmierek, K.; Świątkowski, A.; Kotkowski, T.; Cherbański, R.; Molga, E. Adsorption on activated carbons from end-of-life tyre pyrolysis for environmental applications. Part II. Adsorption from aqueous phase. J. Anal. Appl. Pyrolysis 2021, 158, 105206. [Google Scholar] [CrossRef]
- Ribba, L.; Cimadoro, J.; Goyanes, S. Breaking W/O emulsion with electrospun hierarchically porous PLA fibers. Emergent Mater. 2022, 5, 1507–1516. [Google Scholar] [CrossRef]
- Saien, J.; Akbari, S. Interfacial Tension of Toluene + Water + Sodium Dodecyl Sulfate from (20 to 50) °C and pH between 4 and 9. J. Chem. Eng. Data 2006, 51, 1832–1835. [Google Scholar] [CrossRef]
Interfacial Energy (γ) | Water-UVCNP (mN/m) | Toluene-UVCNP (mN/m) | Xylene-UVCNP (mN/m) | Toluene-Water (mN/m) | Xylene-Water (mN/m) |
---|---|---|---|---|---|
Lower bound | 12.7 | 2.5 | 2.8 | 37 ± 2 | 38 ± 1 |
Upper bound | 31.7 | 9.1 | 9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torasso, N.; González-Seligra, P.; Trupp, F.; Grondona, D.; Goyanes, S. Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity. Colloids Interfaces 2022, 6, 66. https://doi.org/10.3390/colloids6040066
Torasso N, González-Seligra P, Trupp F, Grondona D, Goyanes S. Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity. Colloids and Interfaces. 2022; 6(4):66. https://doi.org/10.3390/colloids6040066
Chicago/Turabian StyleTorasso, Nicolás, Paula González-Seligra, Federico Trupp, Diana Grondona, and Silvia Goyanes. 2022. "Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity" Colloids and Interfaces 6, no. 4: 66. https://doi.org/10.3390/colloids6040066
APA StyleTorasso, N., González-Seligra, P., Trupp, F., Grondona, D., & Goyanes, S. (2022). Turning a Novel Janus Electrospun Mat into an Amphiphilic Membrane with High Aromatic Hydrocarbon Adsorption Capacity. Colloids and Interfaces, 6(4), 66. https://doi.org/10.3390/colloids6040066