Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Equilibrium Surface Tension (ST)
3.1.1. Effect of Counter-Ions
3.2. Interfacial Rheology
3.2.1. Effect of Surfactant Concentration
3.2.2. Effect of Adding Salts
3.2.3. Effect of Surface Pressure
3.2.4. Effect of Different Ions
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Le Guenic, S.; Chaveriat, L.; Lequart, V.; Joly, N.; Martin, P. Renewable surfactants for biochemical applications and nanotechnology. J. Surfactants Deterg. 2019, 22, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Wang, C.; Sun, W.; Gao, Y.; Kowalczuk, P.B. Froth flotation of fluorite: A review. Adv. Colloid Interface Sci. 2021, 290, 102382. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, A.; Firouzi, M.; Albijanic, B.; Celik, M.S. A review on determination of particle–bubble encounter using analytical, experimental and numerical methods. Miner. Eng. 2018, 122, 296–311. [Google Scholar] [CrossRef]
- Amani, P.; Miller, R.; Javadi, A.; Firouzi, M. Pickering foams and parameters influencing their characteristics. Adv. Colloid Interface Sci. 2022, 301, 102606. [Google Scholar] [CrossRef]
- Buckley, T.; Xu, X.; Rudolph, V.; Firouzi, M.; Shukla, P. Review of foam fractionation as a water treatment technology. Sep. Sci. Technol. 2021, 57, 1–30. [Google Scholar] [CrossRef]
- Buckley, T.; Karanam, K.; Xu, X.; Shukla, P.; Firouzi, M.; Rudolph, V. Effect of mono-and di-valent cations on PFAS removal from water using foam fractionation–A modelling and experimental study. Sep. Purif. Technol. 2022, 286, 120508. [Google Scholar] [CrossRef]
- Murray, B.S. Recent developments in food foams. Curr. Opin. Colloid Interface Sci. 2020, 50, 101394. [Google Scholar] [CrossRef]
- Dickinson, E. Advances in food emulsions and foams: Reflections on research in the neo-Pickering era. Curr. Opin. Food Sci. 2020, 33, 52–60. [Google Scholar] [CrossRef]
- Ravera, F.; Miller, R.; Zuo, Y.Y.; Noskov, B.A.; Bykov, A.G.; Kovalchuk, V.I.; Loglio, G.; Javadi, A.; Liggieri, L. Methods and models to investigate the physicochemical functionality of pulmonary surfactant. Curr. Opin. Colloid Interface Sci. 2021, 55, 101467. [Google Scholar] [CrossRef]
- Bykov, A.; Milyaeva, O.Y.; Isakov, N.; Michailov, A.; Loglio, G.; Miller, R.; Noskov, B. Dynamic properties of adsorption layers of pulmonary surfactants. Influence of matter exchange with bulk phase. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125851. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recovery: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- Amani, P.; Hurter, S.; Rudolph, V.; Firouzi, M. Comparison of flow dynamics of air-water flows with foam flows in vertical pipes. Exp. Therm. Fluid Sci. 2020, 119, 110216. [Google Scholar] [CrossRef]
- Amani, P.; Firouzi, M. Effect of salt and particles on the hydrodynamics of foam flows in relation to foam static characteristics. Chem. Eng. Sci. 2022, 254, 117611. [Google Scholar] [CrossRef]
- Amani, P.; Firouzi, M. Foam flow characterisation in a vertical annulus. In Proceedings of the Chemeca 2021: Advance, Disrupt and Sustain, Barton, ACT, Australia, 27–28 September 2021. [Google Scholar]
- Amani, P.; Rudolph, V.; Hurter, S.; Firouzi, M. Sustainable dewatering of unconventional gas wells using engineered multiphase flow dynamics. Fuel 2022, 324, 124675. [Google Scholar] [CrossRef]
- Firouzi, M.; Kovalchuk, V.I.; Loglio, G.; Miller, R. Salt effects on the dilational viscoelasticity of surfactant adsorption layers. Curr. Opin. Colloid Interface Sci. 2022, 57, 101538. [Google Scholar] [CrossRef]
- Kovtun, A.; Kartashynska, E.; Vollhardt, D. Adsorption and viscoelastic properties of chitosan lactate at the liquid-gas interface. JCIS Open 2021, 1, 100001. [Google Scholar] [CrossRef]
- Fruhner, H.; Wantke, K.-D.; Lunkenheimer, K. Relationship between surface dilational properties and foam stability. Colloids Surf. A Physicochem. Eng. Asp. 2000, 162, 193–202. [Google Scholar] [CrossRef]
- Wang, J.; Nguyen, A.V.; Farrokhpay, S. Effects of surface rheology and surface potential on foam stability. Colloids Surf. A Physicochem. Eng. Asp. 2016, 488, 70–81. [Google Scholar] [CrossRef]
- Benjamins, J.; Lucassen-Reynders, E. Surface dilational rheology of proteins adsorbed at air/water and oil/water interfaces. Stud. Interface Sci. 1998, 7, 341–384. [Google Scholar]
- Zhang, Q.; Li, Y.; Cao, L.; Li, L.; Huang, K.; Li, W.; Yang, C. Dilational Viscoelastic Properties of Water–Fuel Interfaces in Single and Binary Surfactant Systems. Energy Fuels 2019, 33, 9055–9066. [Google Scholar] [CrossRef]
- Mucic, N.; Javadi, A.; Kovalchuk, N.; Aksenenko, E.; Miller, R. Dynamics of interfacial layers—Experimental feasibilities of adsorption kinetics and dilational rheology. Adv. Colloid Interface Sci. 2011, 168, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Amani, P.; Karakashev, S.I.; Grozev, N.A.; Simeonova, S.S.; Miller, R.; Rudolph, V.; Firouzi, M. Effect of selected monovalent salts on surfactant stabilized foams. Adv. Colloid Interface Sci. 2021, 295, 102490. [Google Scholar] [CrossRef] [PubMed]
- Patra, N.; Ray, D.; Aswal, V.K.; Ghosh, S. Exploring physicochemical interactions of different salts with sodium N-dodecanoyl sarcosinate in aqueous solution. ACS Omega 2018, 3, 9256–9266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fainerman, V.; Lylyk, S.; Aksenenko, E.; Kovalchuk, N.; Kovalchuk, V.; Petkov, J.; Miller, R. Effect of water hardness on surface tension and dilational visco-elasticity of sodium dodecyl sulphate solutions. J. Colloid Interface Sci. 2012, 377, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Vera, R.E.; Salazar-Rodríguez, F.; Marquez, R.; Forgiarini, A.M. How the influence of different salts on interfacial properties of surfactant–oil–water systems at optimum formulation matches the Hofmeister series ranking. J. Surfactants Deterg. 2020, 23, 603–615. [Google Scholar] [CrossRef]
- Ruwoldt, J.; Simon, S.; Øye, G. Viscoelastic properties of interfacial lignosulfonate films and the effect of added electrolytes. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125478. [Google Scholar] [CrossRef]
- Sett, S.; Karakashev, S.I.; Smoukov, S.K.; Yarin, A.L. Ion-specific effects in foams. Adv. Colloid Interface Sci. 2015, 225, 98–113. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.-C.; Gong, Q.-T.; Luo, L.; Zhang, L.; Zhao, S.; Yong-Yu, J. Effect of Electrolyte on the Interfacial Dilational Properties of Sodium 4, 5-Diheptyl-2-propylbenzene Sulfonate at the Oil–Water Interface. J. Dispers. Sci. Technol. 2009, 30, 217–221. [Google Scholar] [CrossRef]
- Shu, N.-K.; Xu, Z.-C.; Gong, Q.-T.; Ma, W.-J.; Zhang, L.; Zhang, L. Effect of electrolyte on the surface dilational rheological properties of branched cationic surfactant. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127170. [Google Scholar] [CrossRef]
- Amani, P.; Miller, R.; Ata, S.; Hurter, S.; Rudolph, V.; Firouzi, M. Dynamics of interfacial layers for sodium dodecylbenzene sulfonate solutions at different salinities. J. Ind. Eng. Chem. 2020, 92, 174–183. [Google Scholar] [CrossRef]
- Sood, A.K.; Aggarwal, M. Evaluation of micellar properties of sodium dodecylbenzene sulphonate in the presence of some salts. J. Chem. Sci. 2018, 130, 39. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.C.; Gulari, E. Micellization and intermicellar interactions in aqueous sodium dodecyl benzene sulfonate solutions. J. Colloid Interface Sci. 1982, 90, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Han, P.; Sun, G.; Pan, F.; Li, B.; Wang, J.; Lv, C. Surface dilational rheology, foam, and core flow properties of alpha olefin sulfonate. J. Surfactants Deterg. 2017, 20, 35–45. [Google Scholar] [CrossRef]
- Lu, J.R.; Marrocco, A.; Su, T.J.; Thomas, R.K.; Penfold, J. Adsorption of dodecyl sulfate surfactants with monovalent metal counterions at the air-water interface studied by neutron reflection and surface tension. J. Colloid Interface Sci. 1993, 158, 303–316. [Google Scholar] [CrossRef]
- Vlachy, N.; Jagoda-Cwiklik, B.; Vácha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009, 146, 42–47. [Google Scholar] [CrossRef]
- Moreira, L.; Firoozabadi, A. Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Langmuir 2010, 26, 15177–15191. [Google Scholar] [CrossRef]
- Slavchov, R.I.; Karakashev, S.I.; Ivanov, I.B. Ionic surfactants and ion-specific effects: Adsorption, micellization, thin liquid films. In Surfactant Science and Technology: Retrospects and Prospects; CRC Press: Boca Raton, FL, USA, 2014; Volume 528. [Google Scholar]
- Collins, K.D.; Neilson, G.W.; Enderby, J.E. Ions in water: Characterizing the forces that control chemical processes and biological structure. Biophys. Chem. 2007, 128, 95–104. [Google Scholar] [CrossRef]
- Salis, A.; Ninham, B.W. Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem. Soc. Rev. 2014, 43, 7358–7377. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.-S.; Yang, N.; Xu, G.-Y.; Jia, Y.-F.; Liu, Q.; Nan, Y.-Q. Specific ion effects on the micellization of aqueous mixed cationic/anionic surfactant systems with various counterions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 504, 161–173. [Google Scholar] [CrossRef]
- Vlachy, N.; Drechsler, M.; Touraud, D.; Kunz, W. Anion specificity influencing morphology in catanionic surfactant mixtures with an excess of cationic surfactant. Comptes Rendus Chim. 2009, 12, 30–37. [Google Scholar] [CrossRef]
- Kunz, W. Specific ion effects in colloidal and biological systems. Curr. Opin. Colloid Interface Sci. 2010, 15, 34–39. [Google Scholar] [CrossRef]
- Vlachy, N.; Drechsler, M.; Verbavatz, J.-M.; Touraud, D.; Kunz, W. Role of the surfactant headgroup on the counterion specificity in the micelle-to-vesicle transition through salt addition. J. Colloid Interface Sci. 2008, 319, 542–548. [Google Scholar] [CrossRef]
- Firouzi, M.; Howes, T.; Nguyen, A.V. A quantitative review of the transition salt concentration for inhibiting bubble coalescence. Adv. Colloid Interface Sci. 2015, 222, 305–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharker, K.K.; Nazrul Islam, M.; Das, S. Interactions of some Hofmeister cations with sodium dodecyl Sulfate in aqueous solution. J. Surfactants Deterg. 2019, 22, 249–258. [Google Scholar] [CrossRef]
- Collins, K.D. Why continuum electrostatics theories cannot explain biological structure, polyelectrolytes or ionic strength effects in ion–protein interactions. Biophys. Chem. 2012, 167, 43–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fainerman, V.; Lylyk, S.; Aksenenko, E.; Petkov, J.; Yorke, J.; Miller, R. Surface tension isotherms, adsorption dynamics and dilational visco-elasticity of sodium dodecyl sulphate solutions. Colloids Surf. A Physicochem. Eng. Asp. 2010, 354, 8–15. [Google Scholar] [CrossRef]
- Monroy, F.; Kahn, J.G.; Langevin, D. Dilational viscoelasticity of surfactant monolayers. Colloids Surf. A Physicochem. Eng. Asp. 1998, 143, 251–260. [Google Scholar] [CrossRef]
- Lai, L.; Mei, P.; Wu, X.-M.; Cheng, L.; Ren, Z.-H.; Liu, Y. Interfacial dynamic properties and dilational rheology of sulfonate gemini surfactant and its mixtures with quaternary ammonium bromides at the air–water interface. J. Surfactants Deterg. 2017, 20, 565–576. [Google Scholar] [CrossRef]
- Stubenrauch, C.; Miller, R. Stability of Foam Films and Surface Rheology: An Oscillating Bubble Study at Low Frequencies. J. Phys. Chem. B 2004, 108, 6412–6421. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Q.; Liu, T.; Zhao, M. Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil–water interface. Food Hydrocoll. 2011, 25, 921–927. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amani, P.; Firouzi, M. Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. Colloids Interfaces 2022, 6, 41. https://doi.org/10.3390/colloids6030041
Amani P, Firouzi M. Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. Colloids and Interfaces. 2022; 6(3):41. https://doi.org/10.3390/colloids6030041
Chicago/Turabian StyleAmani, Pouria, and Mahshid Firouzi. 2022. "Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions" Colloids and Interfaces 6, no. 3: 41. https://doi.org/10.3390/colloids6030041
APA StyleAmani, P., & Firouzi, M. (2022). Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. Colloids and Interfaces, 6(3), 41. https://doi.org/10.3390/colloids6030041