Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution
Abstract
:1. Introduction
2. Experimental Setup and Procedure
3. Results and Discussion
3.1. Influence of NaCl on SDS made CGAs
3.2. Influence of NaCl on CAPB made CGAs
4. Conclusions
- A significant reduction in the half-life time of produced CGAs by SDS was observed for NaCl concentrations above 20,000 ppm which can be attributed to the precipitation of SDS in the solution.
- Increasing the Krafft temperature of SDS solutions by the addition of NaCl was the reason for SDS precipitation in solution.
- Fast dynamic surface tension measurements using bubble pressure tensiometry supported this observation, i.e., lower effective surfactant concentration due to the precipitation process.
- NaCl did not have considerable influence the surface behavior of the zwitterionic surfactant CAPB and its ability for CGAs production was not reduced. This is because of the presence of both cationic and anionic head groups at the surfactant inducing both attraction and repulsion forces. In this case, the presence of salt simultaneously weakens both attraction and repulsion forces leading to negligible changes in the net forces.
- NaCl decreased the overall ability of XG to build up the viscosity, leading to a considerable decrease in the half-life time of CGAs for both surfactants.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sebba, F. Microfoams—an unexploited colloid system. J. Colloid Interface Sci. 1971, 35, 643–646. [Google Scholar] [CrossRef]
- Sebba, F. Foams and biliquid foams, aphrons; Chichester; Wiley: New York, NY, USA, 1987. [Google Scholar]
- Kinchen, D.; Peavy, M.A.; Brookey, T.; Rhodes, D. Case history: Drilling techniques used in successful redevelopment of low pressure H2S gas carbonate formation. In Proceedings of the SPE/IADC drilling conference, Amsterdam, The Netherlands, 27 February–1 March 2001; Society of Petroleum Engineers: Richardson, TX, USA. [Google Scholar]
- White, C.C.; Chesters, A.P.; Ivan, C.D.; Maikranz, S.; Nouris, R. Aphron-based drilling fluid: Novel technology for drilling depleted formations in the North Sea. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 19–21 February 2003; Society of Petroleum Engineers: Richardson, TX, USA. [Google Scholar]
- Gregoire, M.; Hilbig, N.; Stansbury, M.; Al-Yemeni, S.; Growcock, F.B. Drilling Fractured Granite in Yemen with Solids-Free Aphron Fluid. In Proceedings of the IADC World Drilling, Rome, Italy, 9–10 June 2005. [Google Scholar]
- Sun, Q.; Xu, B. Application of micro-foam drilling fluid technology in Haita area. Nat. Sci. 2012, 4, 438. [Google Scholar] [CrossRef]
- Thomas, S.; Leleux, J.; Delvaux, A. Novell Drilling Fluid Design Enables Successful Drilling of Depleted Carbonate Reservoirs Offshore Republic of Congo. In Proceedings of the SPE/IADC Drilling Conference, Amsterdam, The Netherlands, 5–7 March 2013; Society of Petroleum Engineers: Richardson, TX, USA. [Google Scholar]
- Oyatomari, C.; Orellan, S.; Alvarez, R.; Bojani, R. Application of Drilling Fluid System Based on Air Microbubbles as an Alternative to Underbalance Drilling Technique in Reservoir B-6-X.10- Tia Juana, Lake Maracaibo. In Proceedings of the IADC Global Leadership for the Drilling Industry Conference, Madrid, Spain, 5–6 June 2002. [Google Scholar]
- Montilva, J.; Ivan, C.D.; Friedheim, J.; Bayter, R. Aphron drilling fluid: Field lessons from successful application in drilling depleted reservoirs in Lake Maracaibo. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 6–9 May 2002; Offshore Technology Conference: Richardson, TX, USA. [Google Scholar]
- Molaei, A.; Waters, K.E. Aphron applications—A review of recent and current research. Adv. Colloid Interface Sci. 2015, 216, 36–54. [Google Scholar] [CrossRef] [PubMed]
- Rea, A.B.; Alvis, E.C.; Paiuk, B.P.; Climaco, J.M.; Vallejo, M.; Leon, E.; Inojosa, J. Application of aphrons technology in drilling depleted mature fields. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Port of Spain, Trinidad and Tobago, 27–30 April 2003; Society of Petroleum Engineers: Richardson, TX, USA. [Google Scholar]
- Kralchevsky, P.A.; Danov, K.D.; Broze, G.; Mehreteab, A. Thermodynamics of ionic surfactant adsorption with account for the counterion binding: Effect of salts of various valency. Langmuir 1999, 15, 2351–2365. [Google Scholar] [CrossRef]
- Higiro, J.; Herald, T.J.; Alavi, S. Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res. Int. 2006, 39, 165–175. [Google Scholar] [CrossRef]
- Jang, H.Y.; Zhang, K.; Chon, B.H.; Choi, H.J. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem. 2015, 21, 741–745. [Google Scholar] [CrossRef]
- Zhong, L.; Oostrom, M.; Truex, M.J.; Vermeul, V.R.; Szecsody, J.E. Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J. Hazard. Mater. 2013, 244, 160–170. [Google Scholar] [CrossRef]
- Longe, T.A. Colloidal gas aphrons: Generation, flow characterization and application in soil and groundwater decontamination. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, April 1989. [Google Scholar]
- Kommalapati, R.R.; Roy, D.; Valsaraj, K.T.; Constant, W.D. Characterization of colloidal gas aphron suspensions generated from plant-based natural surfactant solutions. Sep. Sci. Technol. 1996, 31, 2317–2333. [Google Scholar] [CrossRef]
- Save, S.V.; Pangarkar, V.G. Characterisation of colloidal gas aphrons. Chem. Eng. Commun. 1994, 127, 35–54. [Google Scholar] [CrossRef]
- Jauregi, P.; Gilmour, S.; Varley, J. Characterisation of colloidal gas aphrons for subsequent use for protein recovery. Chem. Eng. J. 1997, 65, 1–11. [Google Scholar] [CrossRef]
- Chaphalkar, P.G.; Valsaraj, K.T.; Roy, D. A study of the size distribution and stability of colloidal gas aphrons using a particle size analyzer. Sep. Sci. Technol. 1993, 28, 1287–1302. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Javadi, A.; Bahramian, A.; Miller, R. Thixotropic bulk elasticity versus interfacial elasticity in xanthan gum surfactant mixed solutions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 123–130. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Javadi, A.; Bahramian, A.; Miller, R. Formation and stability of colloidal gas aphron based drilling fluid considering dynamic surface properties. J. Pet. Sci. Eng. 2019, 174, 468–475. [Google Scholar] [CrossRef]
- Karbaschi, M.; Bastani, D.; Javadi, A.; Kovalchuk, V.I.; Kovalchuk, N.M.; Makievski, A.V.; Bonaccurso, E.; Miller, R. Drop profile analysis tensiometry under highly dynamic conditions. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 292–297. [Google Scholar] [CrossRef]
- Javadi, A.; Krägel, J.; Makievski, A.V.; Kovalchuk, V.I.; Kovalchuk, N.M.; Mucic, N.; Loglio, G.; Pandolfini, P.; Karbaschi, M.; Miller, R. Fast dynamic interfacial tension measurements and dilational rheology of interfacial layers by using the capillary pressure technique. Colloids Surf. A Physicochem. Eng. Asp. 2012, 407, 159–168. [Google Scholar] [CrossRef]
- Pasdar, M.; Kazemzadeh, E.; Kamari, E.; Ghazanfari, M.H.; Soleymani, M. Insight into the behavior of colloidal gas aphron (CGA) fluids at elevated pressures: An experimental study. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 250–258. [Google Scholar] [CrossRef]
- Prosser, A.J.; Franses, E.I. Adsorption and surface tension of ionic surfactants at the air–water interface: Review and evaluation of equilibrium models. Colloids Surf. A Physicochem. Eng. Asp. 2001, 178, 1–40. [Google Scholar] [CrossRef]
- Baviere, M.; Bazin, B.; Aude, R. Calcium effect on the solubility of sodium dodecyl sulfate in sodium chloride solutions. J. Colloid Interface Sci. 1983, 92, 580–583. [Google Scholar] [CrossRef]
- Lucia, A.; Henley, H.; Thomas, E. Multiphase equilibrium flash with salt precipitation in systems with multiple salts. Chem. Eng. Res. Des. 2015, 93, 662–674. [Google Scholar] [CrossRef]
- Nakayama, H.; Shinoda, K.; Hutchinson, E. The effect of added alcohols on the solubility and the Krafft point of sodium dodecyl sulfate. J. Phys. Chem. 1966, 70, 3502–3504. [Google Scholar] [CrossRef]
- Singer, M.M.; Tjeerdema, R.S. Fate and effects of the surfactant sodium dodecyl sulfate. Rev. Environ. Contam. Toxicol. 1993, 95–149. [Google Scholar]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Shinoda, K.; Yamaguchi, N.; Carlsson, A. Physical meaning of the Krafft point: Observation of melting phenomenon of hydrated solid surfactant at the Krafft point. J. Phys. Chem. 1989, 93, 7216–7218. [Google Scholar] [CrossRef]
- Iyota, H.; Krastev, R. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate. Colloid Polym. Sci. 2009, 287, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chundru, S.K.C. Effect of Counter Ion Concentration Added with Mixture of Water and Ethylene Glycol on Krafft Temperature of Sodium Dodecyl Sulfate. Master’s Thesis, Eastern Michigan University, Ypsilanti, MI, USA, December 2007. [Google Scholar]
- Nakayama, H.; Shinoda, K.O.Z.O. The effect of added salts on the solubilities and Krafft points of sodium dodecyl sulfate and potassium perfluoro-octanoate. Bull. Chem. Soc. Jpn. 1967, 40, 1797–1799. [Google Scholar] [CrossRef]
- Sharker, K.K. Counter-ion effects on the krafft temperature and micelle formation of ionic surfactants in aqueous solution. Ph.D. Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, September 2016. [Google Scholar]
- Pinho, S.P. and Macedo, E.A. Solubility of NaCl, NaBr, and KCl in water, methanol, ethanol, and their mixed solvents. J. Chem. Eng. Data 2005, 50, 29–32. [Google Scholar] [CrossRef]
- Jacob, S.E.; Amini, S. Cocamidopropyl betaine. Dermatitis 2008, 19, 157–160. [Google Scholar] [CrossRef]
- Danov, K.D.; Kralchevska, S.D.; Kralchevsky, P.A.; Ananthapadmanabhan, K.P.; Lips, A. Mixed solutions of anionic and zwitterionic surfactant (betaine): Surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir 2004, 20, 5445–5453. [Google Scholar] [CrossRef] [Green Version]
- Kamenka, N.; Chevalier, Y.; Zana, R. Aqueous solutions of zwitterionic surfactants with varying carbon number of the intercharge group. 1. Micelle aggregation numbers. Langmuir 1995, 11, 3351–3355. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keshavarzi, B.; Mahmoudvand, M.; Javadi, A.; Bahramian, A.; Miller, R.; Eckert, K. Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution. Colloids Interfaces 2020, 4, 9. https://doi.org/10.3390/colloids4010009
Keshavarzi B, Mahmoudvand M, Javadi A, Bahramian A, Miller R, Eckert K. Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution. Colloids and Interfaces. 2020; 4(1):9. https://doi.org/10.3390/colloids4010009
Chicago/Turabian StyleKeshavarzi, Behnam, Mohsen Mahmoudvand, Aliyar Javadi, Alireza Bahramian, Reinhard Miller, and Kerstin Eckert. 2020. "Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution" Colloids and Interfaces 4, no. 1: 9. https://doi.org/10.3390/colloids4010009
APA StyleKeshavarzi, B., Mahmoudvand, M., Javadi, A., Bahramian, A., Miller, R., & Eckert, K. (2020). Salt Effects on Formation and Stability of Colloidal Gas Aphrons Produced by Anionic and Zwitterionic Surfactants in Xanthan Gum Solution. Colloids and Interfaces, 4(1), 9. https://doi.org/10.3390/colloids4010009