Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Fabrication of Commercial Mesoporous NaZrP-CEX
2.3. Materials Characterization
2.4. Batch Studies for Uranyl Ions Adsorption Assays
3. Results and Discussion
3.1. Fabrication and Characterization of NaZrP-CEX
3.2. Batch Adsorption Studies of Uranyl Ions on ZrP-CEX
3.2.1. Effect of pH
3.2.2. Effect of the Adsorbent Dose
3.2.3. Effect of Contact Time
3.2.4. Effect of Initial Concentration of Uranyl Ions
3.3. Thermodynamics Studies of Uranyl Ions Adsorption on NaZrP-CEX
3.4. NaZrP-CEX Regeneration
3.5. Applicability Evaluation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uranium Resources, production and demand, OECD NEA Publication 6891, 2010.
- Edwards, C.R.; Oliver, A.J. Uranium processing: A review of current methods and technology. JOM 2000, 52, 12–20. [Google Scholar] [CrossRef]
- Elshehy, E.A. Removal of uranium ions from liquid radioactive waste using modified aluminosilica. Sep. Sci. Technol. 2017, 52, 1852–1861. [Google Scholar] [CrossRef]
- Seko, N.; Katakai, A.; Hasegawa, S.; Tamada, M.; Kasai, N.; Takeda, H.; Sugo, T.; Saito, K. Aquaculture of Uranium in Seawater by a Fabric-Adsorbent Submerged System. Nucl. Technol. 2003, 144, 274–278. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Zemyatova, S.; Kornev, K. Automated determination of uranium(VI) in seawater using on-line preconcentration by coprecipitation. J. Anal. Chem. 2017, 69, 105–110. [Google Scholar] [CrossRef]
- Schneider, E.; Lindner, H. Energy Balance of Uranium Recovery from Seawater. In Proceedings of GLOBAL 2013: Nuclear Energy at a Crossroads; American Nuclear Society: La Grange Park, IL, USA, 2013. [Google Scholar]
- Schnug, E.; Lottermoser, B.G. Fertilizer-Derived Uranium and its Threat to Human Health. Environ. Sci. Technol. 2013, 47, 2433–2434. [Google Scholar] [CrossRef] [PubMed]
- Hore-Lacy, I. Uranium for Nuclear Power, Resources. In Mining and Transformation to Fuel, 1st ed.; Woodhead Publishing: Cambridge, UK, 2016. [Google Scholar]
- Wahab, S.A.; Rezik, A.; Abu Khoziem, H.A.; Khalid, E.; Abdellah, W. Kinetics of uranium carbonate leaching process from carbonaceous shale, southwestern Sinai, Egypt. Euro-Mediterr. J. Environ. Integr. 2019, 4, 19. [Google Scholar] [CrossRef]
- James, D.; Venkateswaran, G.; Rao, T.P. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Microporous Mesoporous Mater. 2009, 119, 165–170. [Google Scholar] [CrossRef]
- Atia, B.M.; Gado, M.A.; Cheira, M.F. Kinetics of uranium and iron dissolution by sulfuric acid from Abu Zeneima ferruginous siltstone, Southwestern Sinai, Egypt. Euro-Mediterr. J. Environ. Integr. 2018, 3, 39. [Google Scholar] [CrossRef]
- Zhu, Z.; Pranolo, Y.; Cheng, C.Y. Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner. Eng. 2016, 89, 77–83. [Google Scholar] [CrossRef]
- El-Din, A.F.T.; Elshehy, E.A.; El-Khouly, M.E. Cellulose acetate/EDTA-chelator assisted synthesis of ordered mesoporous HAp microspheres for efficient removal of radioactive species from seawater. J. Environ. Chem. Eng. 2018, 6, 5845–5854. [Google Scholar] [CrossRef]
- Alqadami, A.A.; Naushad, M.; Alothman, Z.A.; Ghfar, A.A. Novel Metal–Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment. ACS Appl. Mater. Interfaces 2017, 9, 36026–36037. [Google Scholar] [CrossRef] [PubMed]
- Pugazhendhi, A.; Boovaragamoorthy, G.M.; Ranganathan, K.; Naushad, M.; Kaliannan, T. New insight into effective biosorption of lead from aqueous solution using Ralstonia solanacearum: Characterization and mechanism studies. J. Clean. Prod. 2018, 174, 1234–1239. [Google Scholar] [CrossRef]
- Naushad, M.; ALOthman, Z.A. Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: Analytical applications for the removal of metal ions from pharmaceutical formulation, Desalin. Water Treat. 2015, 53, 2158–2166. [Google Scholar] [CrossRef]
- Naushad, M. Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem. Eng. J. 2014, 235, 100–108. [Google Scholar] [CrossRef]
- Shenashen, M.; Elshehy, E.A.; El-Safty, S.; Khairy, M. Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors. Sep. Purif. Technol. 2013, 116, 73–86. [Google Scholar] [CrossRef]
- Shenashen, M.; El-Safty, S.; Elshehy, E.; Shenashen, M. Architecture of optical sensor for recognition of multiple toxic metal ions from water. J. Hazard. Mater. 2013, 260, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Tranter, T.J.; Herbst, R.S.; Todd, T.A. Evaluation of ammonium molybdophosphate-polyacrylonitrile AMP-PAN as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv. Environ. Res. 2002, 6, 107–121. [Google Scholar] [CrossRef]
- Seaton, K.; Little, I.; Tate, C.; Mohseni, R.; Roginskaya, M.; Povazhniy, V.; Vasiliev, A.; Little, I. Adsorption of cesium on silica gel containing embedded phosphotungstic acid. Microporous Mesoporous Mater. 2017, 244, 55–66. [Google Scholar] [CrossRef]
- Tag El-Dina, A.; Elshehy, E.A.; El-Khouly, M.E.; Atia, A. Cellulose Acetate Assisted Synthesis of Worm-Shaped Mesoporous MgP Ion-Exchanger for Cesium Ions Removal from Seawater. Microporous Mesoporous Mater. 2018, 265, 211–218. [Google Scholar] [CrossRef]
- Naushad, M.; Ahamad, T.; Al-Maswari, B.M.; Alqadami, A.A.; AlShehri, S.M. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium. Chem. Eng. J. 2017, 330, 1351–1360. [Google Scholar] [CrossRef]
- Sharma, G.; Pathania, D.; Naushad, M.; Kothiyal, N.C. Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from water. Chem. Eng. J. 2014, 251, 413–421. [Google Scholar] [CrossRef]
- Mironyuk, I.; Tatarchuk, T.; Naushad, M.; Vasylyeva, H.; Mykytyn, I. Highly efficient adsorption of strontium ions by carbonated mesoporous TiO2. J. Mol. Liq. 2019, 285, 742–753. [Google Scholar] [CrossRef]
- Chakraborty, R.; Chatterjee, S.; Chattopadhyay, P. Radioanalytical separation and size-dependent ion exchange property of micelle-directed titanium phosphate nanocomposites. J. Radioanal. Nucl. Chem. 2014, 299, 1565–1570. [Google Scholar] [CrossRef]
- Itoh, K.; Nakayama, S. Immobilization of cesium by crystalline zirconium phosphate. J. Mater. Sci. 2002, 37, 1701–1704. [Google Scholar] [CrossRef]
- Swain, S.; Patnaik, T.; Singh, V.; Jha, U.; Patel, R.; Dey, R.; Patel, R. Kinetics, equilibrium and thermodynamic aspects of removal of fluoride from drinking water using meso-structured zirconium phosphate. Chem. Eng. J. 2011, 171, 1218–1226. [Google Scholar] [CrossRef]
- Chakraborty, R.; Bhattacharaya, K.; Chattopadhyay, P. Nanostructured zirconium phosphate as ion exchanger: Synthesis, size dependent property and analytical application in radiochemical separation. Appl. Radiat. Isot. 2014, 85, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Ananthanarayanan, A.; Ambashta, R.; Sudarsan, V.; Ajithkumar, T.; Sen, D.; Mazumder, S.; Wattal, P. Structure and short time degradation studies of sodium zirconium phosphate ceramics loaded with simulated fast breeder (FBR) waste. J. Nucl. Mater. 2017, 487, 5–12. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Liu, Z.-J.; Guo, M.-L. Hydrothermal synthesized microflower sodium zirconium phosphate and its transformation to zirconium hydrogen phosphate. Mater. Lett. 2015, 159, 197–199. [Google Scholar]
- Pet’Kov, V.I.; Sukhanov, M.V. Immobilisation of molybdenum from fuel reprocessing wastes into sodium zirconium phosphate ceramics. Czechoslov. J. Phys. 2003, 53, A671–A677. [Google Scholar] [CrossRef]
- Donia, A.M.; Atia, A.A.; Daher, A.M.; Elshehy, E.A. Extraction and Separation of Zirconium(IV) and Hafnium(IV) from Chloride Media Using Magnetic Resin with Phosphoric Acid Functionality. J. Dispers. Sci. Technol. 2011, 32, 193–202. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, G.; Tan, S.; Liu, Y.; Shi, Q.; Ouyang, Y. Structure and synergetic antibacterial effect of zinc and cerium carried sodium zirconium phosphates. J. Rare Earth 2011, 29, 308–312. [Google Scholar] [CrossRef]
- Wong, R.J.-H. Acid Zirconium Phosphate and Alkaline Hydrous Zirconium Oxide Materials for Sorbent Dialysis. US20100078387A1, 1 April 2010. [Google Scholar]
- Cai, X.; Zhang, B.; Liang, Y.; Zhang, J.; Yan, Y.; Chen, X.; Wu, Z.; Liu, H.; Wen, S.; Tan, S.; et al. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloids Surf. B Biointerfaces 2015, 132, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Sukhanov, M.V.; Ermilova, M.M.; Orekhova, N.V.; Pet’Kov, V.I.; Tereshchenko, G.F. Catalytic properties of zirconium phosphate and double phosphates of zirconium and alkali metals with a NaZr2(PO4)3 structure. Russ. J. Appl. Chem. 2006, 79, 614–618. [Google Scholar] [CrossRef]
- Pet’Kov, V.I.; Sukhanov, M.V.; Ermilova, M.M.; Orekhova, N.V.; Tereshchenko, G.F. Development and synthesis of bulk and membrane catalysts based on framework phosphates and molybdates. Russ. J. Appl. Chem. 2010, 83, 1731–1741. [Google Scholar] [CrossRef]
- Hong, C.; Ravindranathan, P.; Agrawal, D.K.; ROY, R. Synthesis of NaZr2P3O12 powders by evaporative decomposition of solutions. J. Mater. Sci. Lett. 1994, 13, 1015–1016. [Google Scholar]
- Zakutevskyy, O.I.; Psareva, T.S.; Strelko, V.V. Sorption of U(VI) Ions on Sol-Gel-Synthesized Amorphous Spherically Granulated Titanium Phosphates. Russ J. Appl. Chem. 2012, 85, 1366–1370. [Google Scholar] [CrossRef]
- Donat, R.; Akdogan, A.; Erdem, E.; Cetisli, H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions. J. Colloid Interface Sci. 2005, 286, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1401. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Uber die adsorption in losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Z.-Q.; Liu, Q.-Y.; Luo, F.; Wang, Y.-L. A Zinc MOF with Carboxylate Oxygen-Functionalized Pore Channels for Uranium(VI) Sorption. Eur. J. Inorg. Chem. 2019, 2019, 735–739. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, H.; Liu, Q.; Wang, C.; Sun, Z.; Li, R.; Liu, P.; Zhang, M.; Wang, J. Metal-organic frameworks (MIL-68) decorated graphene oxide for highly efficient enrichment of uranium. J. Taiwan Inst. Chem. E. 2019, 99, 45–52. [Google Scholar]
- Sun, H.-Y.; Li, J.; Li, L.-Z.; Deng, Y.-L.; Liu, S.-H.; Feng, M.-L.; Huang, X.-Y. Fast and Selective Removal of Aqueous Uranium by a K+-Activated Robust Zeolitic Sulfide with Wide pH Resistance. Inorg. Chem. 2019, 58, 11622–11629. [Google Scholar]
- Tobilko, V.; Spasonova, L.; Kovalchuk, I.; Kornilovych, B.; Kholodko, Y. Adsorption of Uranium (VI) from Aqueous Solutions by Amino-functionalized Clay Minerals. Colloids Interfaces 2019, 3, 41. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, X.; Wang, T.; Zhao, D.; Ni, J. Adsorption of U(VI) by multilayer titanate nanotubes: Effects of inorganic cations, carbonate and natural organic matter. Chem. Eng. J. 2016, 286, 427–435. [Google Scholar] [CrossRef]
- Li, R.; Che, R.; Liu, Q.; Su, S.; Li, Z.; Zhang, H.; Liu, J.; Liu, L.; Wang, J. Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. J. Hazard. Mater. 2017, 338, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Wang, Y.; Liu, Q.; Wang, J.; Jing, X.; Liu, L.; Liu, J.; Song, D. Enhanced adsorption of uranium (VI) using a three-dimensional layered double hydroxide/graphene hybrid material. Chem. Eng. J. 2015, 259, 752–760. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, C.; Zhou, X.; Yang, J.; Zhang, X.; Wang, J. Removal of uranium (VI) from aqueous solution by adsorption of hematite. J. Environ. Radioact. 2009, 100, 162–166. [Google Scholar] [CrossRef]
- Cakir, P.; İnan, S.; Altas, Y. Investigation of strontium and uranium sorption onto zirconium-antimony oxide/polyacrylonitrile (Zr-Sb oxide/PAN) composite using experimental design. J. Hazard. Mater. 2014, 271, 108–119. [Google Scholar] [CrossRef]
- Han, R.; Zou, W.; Wang, Y.; Zhu, L. Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: Discussion of adsorption isotherms and pH effect. J. Environ. Radioact. 2007, 93, 127–143. [Google Scholar] [CrossRef]
- Abd El-Magied, M.; Elshehy, E.; Manaa, E.; Tolba, A.; Atia, A. Kinetics and Thermodynamics Studies on the Recovery of Thorium Ions Using Amino Resins with Magnetic Properties. Ind. Eng. Chem. Res. 2016, 55, 11338–11345. [Google Scholar] [CrossRef]
- Abu-zeid, M.; El Aassy, I.; Aly, G.; Abu zeid, E.; Baghdady, A.; Ahmed, A. Geology, petrography and mineralogy of the uraniferous Um Bogma Formation in Gebel Um Hamd, Southwestern Sinai, Egypt. Egypt. J. Geol. 2018, 62, 191–215. [Google Scholar]
Method of Preparation | Application | Surface Area | Ref. |
---|---|---|---|
Sol-Gel | Antibacterial activity | 5.10 | [34] |
Co-precipitation | Sorbent dialysis | 1.9 | [35] |
Sol-gel | Antibacterial activity | 5.24 | [36] |
Sol–gel | Catalytic activity | 26.8 | [37] |
Sol–gel | Catalytic activity | 63 | [38] |
Evaporative decomposition of solutions | – | 29.2 | [39] |
Hydrothermal | Uranium adsorption | 88.5 | Our Work |
Adsorbent | Uptake, mg/g | Ref. |
---|---|---|
Zinc MOF carboxylate | 114.70 | [45] |
MIL-68/GO | 375.00 | [46] |
K+-Activated Robust Zeolitic Sulfide | 147.60 | [47] |
Amino-functionalized palygorskite | 90.20 | [48] |
Titanate nanotubes | 333.00 | [49] |
Mg-Co layered-double-hydroxide | 915.61 | [50] |
rGO/LDH | 277.80 | [51] |
Hematite | 3.36 | [52] |
Zr-Sb oxide/PAN | 60.66 | [53] |
Manganese oxide coated zeolite | 15.10 | [54] |
HAp | 59.30 | [13] |
NaZrP-CEX | 129.60 | [This work] |
T, k | qe. mg/g | Non-Linear Freundlich Parameters | Linear Freundlich Parameters | Langmuir Parameters | Thermodynamic Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KF | n | R2 | KF | n | R2 | Qmax | KL | R2 | ΔH° | ΔS° | ΔG° | ||
298 | 129.6 | 39.6 | 3.10 | 0.946 | 12.0 | 1.98 | 0.979 | 107.5 | 0.18 | 0.968 | 61.4 | 0.23 | −7.7 |
308 | 135.2 | 18.9 | 2.63 | 0.907 | 17.8 | 1.87 | 0.988 | 136.9 | 0.21 | 0.982 | −10.1 | ||
318 | 140.3 | 27.2 | 2.67 | 0.955 | 28.8 | 2.13 | 0.954 | 144.9 | 0.46 | 0.991 | −12.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhindawy, I.G.; Elshehy, E.A.; El-Khouly, M.E.; Abdel-Monem, Y.K.; Atrees, M.S. Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors. Colloids Interfaces 2019, 3, 61. https://doi.org/10.3390/colloids3040061
Alhindawy IG, Elshehy EA, El-Khouly ME, Abdel-Monem YK, Atrees MS. Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors. Colloids and Interfaces. 2019; 3(4):61. https://doi.org/10.3390/colloids3040061
Chicago/Turabian StyleAlhindawy, Islam G., Emad A. Elshehy, Mohamed E. El-Khouly, Yasser K. Abdel-Monem, and Mohamed S. Atrees. 2019. "Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors" Colloids and Interfaces 3, no. 4: 61. https://doi.org/10.3390/colloids3040061
APA StyleAlhindawy, I. G., Elshehy, E. A., El-Khouly, M. E., Abdel-Monem, Y. K., & Atrees, M. S. (2019). Fabrication of Mesoporous NaZrP Cation-Exchanger for U(VI) Ions Separation from Uranyl Leach Liquors. Colloids and Interfaces, 3(4), 61. https://doi.org/10.3390/colloids3040061