Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, R.; Kang, Y.; Zhang, M.; Wang, H.; Shi, L.; Li, X. Development of prognostic nomogram model to predict syncope recurrence in children with vasovagal syncope. Front. Cardiovasc. Med. 2023, 10, 1099115. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Peng, Y.; Zou, R.; Wang, Y.; Cai, H.; Li, F.; Luo, X.; Zhang, J.; He, Z.; Wang, C. The relationship between demographic factors and syncopal symptom in pediatric vasovagal syncope. Sci. Rep. 2023, 13, 22724. [Google Scholar] [CrossRef] [PubMed]
- Virag, N.; Erickson, M.; Taraborrelli, P.; Vetter, R.; Lim, P.B.; Sutton, R. Predicting vasovagal syncope from heart rate and blood pressure: A prospective study in 140 subjects. Heart Rhythm 2018, 15, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kim, J.T.; Kwak, S.S.; Hourlier-Fargette, A.; Avila, R.; Vogl, J.; Tzavelis, A.; Chung, H.U.; Lee, J.Y.; Kim, D.H.; et al. Wireless, Skin-Interfaced Devices for Pediatric Critical Care: Application to Continuous, Noninvasive Blood Pressure Monitoring. Adv. Healthc. Mater. 2021, 10, e2100383. [Google Scholar] [CrossRef]
- Bin Lee, H.B.; Park, G.; Jung, M.; Yong Shin, S.; Cho, S.; Hwan Cho, J. Machine Learning Model Using Heart Rate Variability for the Prediction of Vasovagal Syncope. IEEE Access 2024, 12, 151153–151160. [Google Scholar] [CrossRef]
- Mikielewicz, M.; Gąsior, J.S.; Młyńczak, M. CoRRection–an open source software tool for RR intervals processing. Pol. J. Med. Phys. Eng. 2025, 31, 10–19. [Google Scholar] [CrossRef]
- Gąsior, J.S.; Młyńczak, M.; Rosoł, M.; Wieniawski, P.; Walecka, I.; Cybulski, G.; Werner, B. Validity of the Pneumonitor for RR intervals acquisition for short-term heart rate variability analysis extended with respiratory data in pediatric cardiac patients. Kardiol. Pol. 2023, 81, 491–500. [Google Scholar] [CrossRef]
- Gąsior, J.S.; Młyńczak, M.; Rosoł, M.; Wieniawski, P.; Pietrzak, R.; Werner, B. Validity of the Pneumonitor for Analysis of Short-Term Heart Rate Asymmetry Extended with Respiratory Data in Pediatric Cardiac Patients. J. Clin. Med. 2024, 13, 4654. [Google Scholar] [CrossRef]
- Zhu, W.; Bian, X.; Lv, J. Advances in diagnosis, management, and long-term outcomes of pediatric vasovagal syncope: A comprehensive review. Front. Cardiovasc. Med. 2025, 12, 1481749. [Google Scholar] [CrossRef]
- Tao, C.Y.; Chen, S.; Li, X.Y.; Tang, C.S.; Du, J.B.; Jin, H.F. Body mass index is a promising predictor of response to oral rehydration saline in children with vasovagal syncope. Chin. Med. J. 2020, 134, 463–468. [Google Scholar] [CrossRef]
- de Souza, A.C.; Cisternas, J.R.; de Abreu, L.C.; Roque, A.L.; Monteiro, C.B.; Adami, F.; Vanderlei, L.C.; Sousa, F.H.; Ferreira, L.L.; Valenti, V.E. Fractal correlation property of heart rate variability in response to the postural change maneuver in healthy women. Int. Arch. Med. 2014, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, P.; Parati, G.; Lombardi, C.; Quintin, L.; Di Rienzo, M. Assessing the fractal structure of heart rate by the temporal spectrum of scale exponents: A new approach for detrended fluctuation analysis of heart rate variability. Biomed. Tech. 2011, 56, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Perseguini, N.M.; Takahashi, A.C.; Rebelatto, J.R.; Silva, E.; Borghi-Silva, A.; Porta, A.; Montano, N.; Catai, A.M. Spectral and symbolic analysis of the effect of gender and postural change on cardiac autonomic modulation in healthy elderly subjects. Braz. J. Med. Biol. Res. 2011, 44, 29–37. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Di Rienzo, M.; Carabalona, R.; Cividjian, A.; Quintin, L. Scale exponents of blood pressure and heart rate during autonomic blockade as assessed by detrended fluctuation analysis. J. Physiol. 2011, 589, 355–369. [Google Scholar] [CrossRef]
- Shim, S.H.; Park, S.Y.; Moon, S.N.; Oh, J.H.; Lee, J.Y.; Kim, H.H.; Han, J.W.; Lee, S.J. Baseline heart rate variability in children and adolescents with vasovagal syncope. Korean J. Pediatr. 2014, 57, 193–198. [Google Scholar] [CrossRef]
- Kouakam, C.; Lacroix, D.; Zghal, N.; Logier, R.; Klug, D.; Le Franc, P.; Jarwe, M.; Kacet, S. Inadequate sympathovagal balance in response to orthostatism in patients with unexplained syncope and a positive head up tilt test. Heart 1999, 82, 312–318. [Google Scholar] [CrossRef]
- Piccirillo, G.; Elvira, S.; Bucca, C.; Viola, E.; Cacciafesta, M.; Marigliano, V. Abnormal passive head-up tilt test in subjects with symptoms of anxiety power spectral analysis study of heart rate and blood pressure. Int. J. Cardiol. 1997, 60, 121–131. [Google Scholar] [CrossRef]
- Guzzetti, S.; Borroni, E.; Garbelli, P.E.; Ceriani, E.; Della Bella, P.; Montano, N.; Cogliati, C.; Somers, V.K.; Malliani, A.; Porta, A. Symbolic dynamics of heart rate variability: A probe to investigate cardiac autonomic modulation. Circulation 2005, 112, 465–470. [Google Scholar] [CrossRef]
- Cysarz, D.; Van Leeuwen, P.; Edelhäuser, F.; Montano, N.; Porta, A. Binary symbolic dynamics classifies heart rate variability patterns linked to autonomic modulations. Comput. Biol. Med. 2012, 42, 313–318. [Google Scholar] [CrossRef]
- Stewart, J.M.; Boris, J.R.; Chelimsky, G.; Fischer, P.R.; Fortunato, J.E.; Grubb, B.P.; Heyer, G.L.; Jarjour, I.T.; Medow, M.S.; Numan, M.T.; et al. Pediatric Writing Group of the American Autonomic Society. Pediatric Disorders of Orthostatic Intolerance. Pediatrics 2018, 141, e20171673. [Google Scholar] [CrossRef]
- Orjatsalo, M.; Alakuijala, A.; Partinen, M. Heart Rate Variability in Head-Up Tilt Tests in Adolescent Postural Tachycardia Syndrome Patients. Front. Neurosci. 2020, 14, 725. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, S.; Liu, P.; Wang, Y.; Tang, C.; Jin, H.; Du, J. Heart Rate Variability Predicts Therapeutic Response to Metoprolol in Children with Postural Tachycardia Syndrome. Front. Neurosci. 2019, 13, 1214. [Google Scholar] [CrossRef]

| Supine Time Window for HRV Calculation [min] | Standing Time Window for HRV Calculation [min] | Accuracy [%] | Sensitivity [%] | Specificity [%] | Precision [%] | F1 |
|---|---|---|---|---|---|---|
| 1 | 1 | 66.7 ± 11.7 | 69.0 ± 15.2 | 64.2 ± 18.9 | 74.0 ± 12.8 | 0.70 ± 0.10 |
| 2 | 2 | 68.9 ± 12.0 | 68.7 ± 13.7 | 69.2 ± 14.2 | 76.3 ± 11.4 | 0.72 ± 0.11 |
| 3 | 3 | 65.6 ± 16.7 | 72.7 ± 19.0 | 55.0 ± 30.5 | 71.4 ± 14.7 | 0.71 ± 0.15 |
| 4 | 4 | 68.9 ± 16.7 | 70.7 ± 25.2 | 64.2 ± 25.8 | 70.7 ± 28.0 | 0.70 ± 0.26 |
| 5 | 1 | 62.6 ± 18.6 | 64.7 ± 22.7 | 60.0 ± 28.5 | 70.7 ± 20.6 | 0.66 ± 0.19 |
| 5 | 2 | 63.3 ± 14.4 | 70.7 ± 19.2 | 55.0 ± 29.4 | 70.5 ± 18.2 | 0.69 ± 0.13 |
| 5 | 3 | 65.6 ± 20.9 | 62.7 ± 22.0 | 70.8 ± 27.6 | 74.7 ± 23.8 | 0.67 ± 0.22 |
| 5 | 4 | 64.2 ± 17.8 | 58.7 ± 25.9 | 70.8 ± 23.3 | 76.8 ± 22.1 | 0.64 ± 0.22 |
| 5 | 5 | 71.0 ± 18.3 | 76.3 ± 20.8 | 63.3 ± 18.5 | 74.2 ± 14.9 | 0.75 ± 0.17 |
| 1 | - | 64.2 ± 15.8 | 60.7 ± 21.2 | 68.3 ± 26.9 | 76.5 ± 19.7 | 0.65 ± 0.17 |
| 2 | - | 60.8 ± 13.2 | 66.7 ± 16.3 | 52.5 ± 35.1 | 69.4 ± 17.3 | 0.66 ± 0.12 |
| 3 | - | 59.7 ± 18.8 | 66.3 ± 30.1 | 49.2 ± 18.2 | 62.8 ± 16.5 | 0.63 ± 0.23 |
| 4 | - | 65.4 ± 14.8 | 72.0 ± 14.0 | 55.0 ± 24.9 | 70.7 ± 14.4 | 0.71 ± 0.12 |
| 5 | - | 65.6 ± 19.9 | 73.0 ± 20.0 | 55.8 ± 28.6 | 70.8 ± 17.3 | 0.71 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieniawski, P.; Gąsior, J.S.; Rosoł, M.; Młyńczak, M.; Smereczyńska-Wierzbicka, E.; Piórecka-Makuła, A.; Pietrzak, R. Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study. Mach. Learn. Knowl. Extr. 2025, 7, 166. https://doi.org/10.3390/make7040166
Wieniawski P, Gąsior JS, Rosoł M, Młyńczak M, Smereczyńska-Wierzbicka E, Piórecka-Makuła A, Pietrzak R. Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study. Machine Learning and Knowledge Extraction. 2025; 7(4):166. https://doi.org/10.3390/make7040166
Chicago/Turabian StyleWieniawski, Piotr, Jakub S. Gąsior, Maciej Rosoł, Marcel Młyńczak, Ewa Smereczyńska-Wierzbicka, Anna Piórecka-Makuła, and Radosław Pietrzak. 2025. "Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study" Machine Learning and Knowledge Extraction 7, no. 4: 166. https://doi.org/10.3390/make7040166
APA StyleWieniawski, P., Gąsior, J. S., Rosoł, M., Młyńczak, M., Smereczyńska-Wierzbicka, E., Piórecka-Makuła, A., & Pietrzak, R. (2025). Machine Learning Prediction of Recurrent Vasovagal Syncope in Children Using Heart Rate Variability and Anthropometric Data—A Pilot Study. Machine Learning and Knowledge Extraction, 7(4), 166. https://doi.org/10.3390/make7040166

