Machine Learning Classification of Fossilized Pectinodon bakkeri Teeth Images: Insights into Troodontid Theropod Dinosaur Morphology
Abstract
:1. Introduction
2. Materials and Methods
- Crown Height: the total height of the tooth.
- Fore-Aft Basal Length: the length of the base of the tooth, from the front to the back.
- Basal Width: the width of the tooth’s base at its widest dimension.
- Posterior Denticles per Millimeter: the number of small, pointed structures called denticles located on the posterior carina of a tooth, in one millimeter of tooth length.
- Anterior Denticles: presence or absence of anterior denticles.
3. Results
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Averianov, A.O.; Sues, H.D. A new troodontid (Dinosauria: Theropoda) from the Cenomanian of Uzbekistan, with a review of Troodontid records from the territories of the former Soviet Union. J. Vertebr. Paleontol. 2007, 27, 87–98. [Google Scholar]
- Bever, G.S.; Norell, M.A. The perinate skull of Byronosaurus (Troodontidae) with observations on the cranial ontogeny of paravian theropods. Am. Mus. Novit. 2009, 3657, 1–52. [Google Scholar] [CrossRef]
- Currie, P.J.; Evans, D.C. Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park Formation (Campanian) of Alberta. Anat. Rec. 2020, 303, 691–715. [Google Scholar] [CrossRef]
- Duan, X. Automatic identification of conodont species using fine-grained convolutional neural networks. Front. Earth Sci. 2023, 10, 1046327. [Google Scholar] [CrossRef]
- DeMar, D.G. An Illustrated Guide to Latest Cretaceous Vertebrate Microfossils of the Hell Creek Formation of Northeastern Montana. Unpublished Work. 2012. Available online: https://naturalhistory.si.edu/sites/default/files/media/file/fossil-id-guide062812-accessible.pdf (accessed on 18 May 2025).
- Farlow, J.O.; Brinkman, D.L.; Abler, W.L.; Currie, P.J. Size, shape, and serration density of theropod dinosaur lateral teeth. Mod. Geol. 1991, 16, 161–198. [Google Scholar]
- Larson, D.W.; Currie, P.J. Multivariate analyses of small theropod dinosaur teeth and implications for paleoecological turnover through time. PLoS ONE 2013, 8, e54329. [Google Scholar] [CrossRef]
- Rogers, R.R.; Eberth, D.A.; Fiorillo, A.R. (Eds.) A practical approach to the study of bonebeds. In Bonebeds: Genesis, Analysis, and Paleobiological Significance; University of Chicago Press: Chicago, IL, USA, 2007; pp. 265–332. [Google Scholar]
- Eaton, J.G. New screen-washing approaches to biostratigraphy and paleoecology of nonmarine rocks, Cretaceous of Utah. Bull. Carnegie Mus. Nat. Hist. 2004, 36, 21–30. [Google Scholar]
- Vasile, S.; Csiki, Z. Comparative paleoecological analysis of some microvertebrate fossil assemblages from the Hateg Basin, Romania. Stud. Şi Comun. Ştiinţele Nat. 2010, 26, 315–322. [Google Scholar]
- Whitebone, S.A.; Funston, G.F.; Currie, P.J. An unusual microsite from the Upper Cretaceous Horseshoe Canyon Formation of Alberta, Canada. J. Vertebr. Paleontol. 2024, 43, e2316668. [Google Scholar] [CrossRef]
- Ullman, P.V.; Varricchio, D.; Knell, M.J. Taphonomy and taxonomy of a vertebrate microsite in the mid-Cretaceous (Albian-Cenomian) Blackleaf Formation, southwest Montana. Hist. Biol. 2011, 24, 311–328. [Google Scholar]
- Brinkman, D.B.; Divay, J.D.; DeMar, D.G., Jr.; Wilson-Mantila, G.P. A systematic reappraisal and quantitative study of the nonmarine teleost fishes from the late Maastrichtian of the Western Interior of North America: Evidence from vertebrate microfossil localities. Can. J. Earth Sci. 2021, 58, 936–967. [Google Scholar] [CrossRef]
- Brand, N.A.; Heckert, A.B.; Sanchez, I.; Foster, J.R.; Hunt-Foster, R.K.; Eberle, J.J. New Late Cretaceous microvertebrate assemblage from the Campanian-Maastrichtian Willinas Fork Formation, northwestern Colorado, USA, and its paleoenvironmental implications. Acta Palaeontol. Pol. 2022, 67, 579–600. [Google Scholar] [CrossRef]
- Heckert, A.B.; Foster, J.R. Ichthyoliths and other microvertebrate remains from the Morrison Formation (Upper Jurassic) of northeastern Wyoming: A screen-washed sample indicates a significant aquatic component to the fauna. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 305, 264–279. [Google Scholar]
- Blanco, A.; Szabo, M.; Blanco-Lapaz, A.; Marmi, J. Late Cretaceous (Maastrichtian) Chondrichthyes and Osteichthyes from northeastern Iberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2017, 465, 278–294. [Google Scholar] [CrossRef]
- Mitra, R.; Marchitto, T.M.; Ge, Q.; Zhong, B.; Kanakiya, B.; Cook, M.S.; Fehrenbacher, J.S.; Ortiz, J.D.; Tripati, A.; Lobaton, E. Automated species-level identification of planktonic foraminifera using convolutional neural networks, with comparison to human performance. Mar. Micropaleontol. 2019, 147, 16–24. [Google Scholar] [CrossRef]
- Lipsword, H.L. Geology of Gulf Coast and Central Texas and Guidebook of Excursions; Houston Geological Society: Houston, TX, USA, 1962; pp. 16–57. [Google Scholar]
- Hou, C.; Lin, X.; Huang, H.; Xu, S.; Fan, J.; Shi, Y.; Lv, H. Fossil image identification using deep learning ensembles of data augmented multiviews. Methods Ecol. Evol. 2023, 14, 3020–3034. [Google Scholar] [CrossRef]
- Moore, T.C., Jr. Method of randomly distributing grains for microscopic examination. J. Sediment. Petrol. 1973, 43, 904–906. [Google Scholar]
- Itaki, T.; Taira, Y.; Kuwamori, N.; Maebayashi, T.; Takeshima, S.; Toya, K. Automated collection of single species of microfossils using a deep learning–micromanipulator system. Prog. Earth Planet. Sci. 2020, 7, 19. [Google Scholar] [CrossRef]
- Gaston, K.J.; O’Neill, M.A. Automated species identification: Why not? Philos. Trans. R. Soc. 2004, 359, 655–667. [Google Scholar] [CrossRef]
- Cifuentes-Alcobendas, G.; Domínguez-Rodrigo, M. Deep learning and taphonomy: High accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks. Sci. Rep. 2019, 9, 18933. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Cui, X.; Canul-Ku, M.; Jin, S.; Hasimoto-Beltran, R.; Guo, Q.; Zhu, M. ADMorph: A 3D digital microfossil morphology dataset for deep learning. IEEE Access 2020, 8, 148744–148756. [Google Scholar] [CrossRef]
- Itaki, T.; Taira, Y.; Kuwamori, N.; Saito, H.; Ikehara, M.; Hoshino, T. Innovative microfossil (radiolarian) analysis using a system for automated image collection and AI-based classification of species. Sci. Rep. 2020, 10, 21136. [Google Scholar] [CrossRef] [PubMed]
- Marchant, R.; Tetard, M.; Pratiwi, A.; Adebayo, M.; Garidel-Thoron, T. Automated analysis of foraminifera fossil records by image classification using a convolutional neural network. J. Micropalaeontol. 2020, 39, 183–202. [Google Scholar] [CrossRef]
- Ge, Q.; Richmond, T.; Zhong, B.; Marchitto, T.M.; Lobaton, E.J. Enhancing the morphological segmentation of microscopic fossils through localized topology-aware edge detection. Auton. Robot. 2021, 45, 709–723. [Google Scholar] [CrossRef]
- Xiaolu, Y.; Kai, Y.; Chongjiao, D.; Hanning, G.; Zhongliang, M. Microscopic recognition of micro fossils in carbonate rocks based on convolutional neural network. Pet. Geol. Exp. 2021, 43, 880–885. [Google Scholar]
- Mimura, K.; Minabe, S.; Nakamura, K.; Yasukawa, K.; Ohta, J.; Kato, Y. Automated detection of microfossil fish teeth from slide images using combined deep learning models. Appl. Comput. Geosci. 2022, 16, 100092. [Google Scholar] [CrossRef]
- Wang, H.; Li, C.; Zhang, Z.; Kershaw, S.; Holmer, L.E.; Zhang, Y.; Wei, K.; Liu, P. Fossil brachiopod identification using a new deep convolutional neural network. Gondwana Res. 2022, 105, 290–298. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, S.; Wu, R.; Shu, W.; Hou, J.; Sun, Y.; Sun, J.; Chu, D.; Wu, Y.; Song, H. Automatic taxonomic identification based on the fossil image dataset (>415,000 images) and deep convolutional neural networks. Paleobiology 2023, 49, 1–22. [Google Scholar] [CrossRef]
- Ozer, I.; Ozer, C.K.; Karaca, A.C.; Gorur, K.; Kocak, I.; Cetin, O. Species-level microfossil identification for Globotruncana genus using hybrid deep learning algorithms from scratch via a low-cost light microscope imaging. Multimed. Tools Appl. 2023, 82, 13689–13718. [Google Scholar] [CrossRef]
- Sun, J.; Liu, X.; Huang, Y.; Wang, F.; Sun, Y.; Chen, J.; Chu, D.; Song, H. Automatic identification and morphological comparison of bivalve and brachiopod fossils based on deep learning. PeerJ 2023, 11, 16200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xin, C.; Yang, D.; Jiao, Z.; Liu, S.; Di, G.; Zhao, H. Numerical taxonomy and genus-species identification of Czekanowskiales in China based on machine learning. Palaeontol. Electron. 2024, 27, a10. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, L.A.; Yravedra, J.; Huguet, R.; Aramendi, J.; Maté-González, M.Á.; González-Aguilera, D.; Arriaza, M.C. Combining machine learning algorithms and geometric morphometrics: A study of carnivore tooth marks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 522, 28–39. [Google Scholar] [CrossRef]
- Sankey, J.T. Diversity of Latest Cretaceous (Late Maastrichtian) small theropods and birds: Teeth from the Lance and Hell Creek Formations, USA. In Vertebrate Microfossil Assemblages: Their Role in Paleoecology and Paleobiogeography; Sankey, J.T., Baszio, S., Eds.; Indiana University Press: Bloomington, IN, USA, 2008; pp. 117–134. [Google Scholar]
- Carpenter, K. Baby dinosaurs from the Late Cretaceous Lance and Hell Creek Formations and a description of a new species of theropod. Contrib. Geol. Univ. Wyo. 1982, 20, 123–134. [Google Scholar]
- Currie, P.J.; Rigby, K., Jr.; Sloan, R.E. Theropod teeth from the Judith River Formation of southern Alberta, Canada. In Dinosaur Systematics: Approaches and Perspectives; Carpenter, P.J., Currie, K., Eds.; Cambridge University Press: New York, NJ, USA, 1990; pp. 107–125. [Google Scholar]
- Longrich, N.R. Small theropod teeth from the Lance Formation of Wyoming, USA. In Vertebrate Microfossil Assemblages: Their Role in Paleoecology and Paleobiogeography; Sankey, J.T., Baszio, S., Eds.; Indiana University Press: Bloomington, IN, USA, 2008; pp. 135–158. [Google Scholar]
- Kiel, S. Assessing bivalve phylogeny using deep learning and computer vision approaches. bioRxiv 2021. [Google Scholar] [CrossRef]
- Zhao, Z.; Lu, Y.; Tong, Y.; Chen, X.; Bai, M. PENet: A phenotype encoding network for automatic extraction and representation of morphological discriminative features. Methods Ecol. Evol. 2023, 14, 3035–3046. [Google Scholar] [CrossRef]
Cluster | Crown Height mm | Fore-Aft Basal Length mm | Basal Width mm | Posterior Denticles per mm |
---|---|---|---|---|
1 | 4.495 | 2.774 | 1.192 | 2 |
2 | 2.854 | 2.161 | 785 | 4 |
3 | 3.671 | 2.541 | 941 | 3 |
Cluster | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Cluster 1 | 71 | 70 | 73 | 71 |
Cluster 3 | 71 | 72 | 68 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahn, J.; Alférez, G.H.; Snyder, K. Machine Learning Classification of Fossilized Pectinodon bakkeri Teeth Images: Insights into Troodontid Theropod Dinosaur Morphology. Mach. Learn. Knowl. Extr. 2025, 7, 45. https://doi.org/10.3390/make7020045
Bahn J, Alférez GH, Snyder K. Machine Learning Classification of Fossilized Pectinodon bakkeri Teeth Images: Insights into Troodontid Theropod Dinosaur Morphology. Machine Learning and Knowledge Extraction. 2025; 7(2):45. https://doi.org/10.3390/make7020045
Chicago/Turabian StyleBahn, Jacob, Germán H. Alférez, and Keith Snyder. 2025. "Machine Learning Classification of Fossilized Pectinodon bakkeri Teeth Images: Insights into Troodontid Theropod Dinosaur Morphology" Machine Learning and Knowledge Extraction 7, no. 2: 45. https://doi.org/10.3390/make7020045
APA StyleBahn, J., Alférez, G. H., & Snyder, K. (2025). Machine Learning Classification of Fossilized Pectinodon bakkeri Teeth Images: Insights into Troodontid Theropod Dinosaur Morphology. Machine Learning and Knowledge Extraction, 7(2), 45. https://doi.org/10.3390/make7020045