Reply to Damaševičius, R. Comment on “Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366”
Data Availability Statement
Conflicts of Interest
References
- Novozhilova, E.; Mays, K.; Paik, S.; Katz, J.E. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. [Google Scholar] [CrossRef]
- Damaševičius, R. Comment on Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366. Mach. Learn. Knowl. Extr. 2024, 6, 1667–1669. [Google Scholar] [CrossRef]
- Mays, K.K.; Lei, Y.; Giovanetti, R.; Katz, J.E. AI as a boss? A national US survey of predispositions governing comfort with expanded AI roles in society. AI Soc. 2021, 37, 1587–1600. [Google Scholar] [CrossRef]
- Novozhilova, E.; Mays, K.; Katz, J. Looking towards an automated future: U.S. attitudes towards future artificial intelligence instantiations and their effect. Humanit. Soc. Sci. Commun. 2024, 11, 132. [Google Scholar] [CrossRef]
- van der Veer, S.N.; Riste, L.; Cheraghi-Sohi, S.; Phipps, D.L.; Tully, M.P.; Bozentko, K.; Peek, N. Trading off accuracy and explainability in AI decision-making: Findings from 2 citizens’ juries. J. Am. Med. Inform. Assoc. 2021, 28, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Kieslich, K.; Helberger, N.; Diakopoulos, N. My Future with My Chatbot: A Scenario-Driven, User-Centric Approach to Anticipating AI Impacts. arXiv 2024, arXiv:2401.14533. [Google Scholar]
- Kim, J.H.; Jung, H.S.; Park, M.H.; Lee, S.H.; Lee, H.; Kim, Y.; Nan, D. Exploring cultural differences of public perception of artificial intelligence via big data approach. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2022; pp. 427–432. [Google Scholar]
- Kelley, P.G.; Yang, Y.; Heldreth, C.; Moessner, C.; Sedley, A.; Kramm, A.; Newman, D.T.; Woodruff, A. Exciting, useful, worrying, futuristic: Public perception of artificial intelligence in 8 countries. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual, 19–21 May 2021; pp. 627–637. [Google Scholar]
- Ikkatai, Y.; Itatsu, Y.; Hartwig, T.; Noh, J.; Takanashi, N.; Yaguchi, Y.; Hayashi, K.; Yokoyama, H.M. The relationship between the attitudes of the use of AI and diversity awareness: Comparisons between Japan, the US, Germany, and South Korea. AI Soc. 2024, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Chen, A.; Zhang, R.; Lee, Y.C. Understanding Public Perceptions of AI Conversational Agents: A Cross-Cultural Analysis. arXiv 2024, arXiv:2402.16039. [Google Scholar]
- Fortunati, L.; Edwards, A.; Manganelli, A.M.; Edwards, C.; de Luca, F. Do people perceive Alexa as gendered?: A cross-cultural study of people’s perceptions, expectations, and desires of Alexa. Hum.-Mach. Commun. 2022, 5, 75–97. [Google Scholar] [CrossRef]
- Mantello, P.; Ho, M.T.; Nguyen, M.H.; Vuong, Q.H. Bosses without a heart: Socio-demographic and cross-cultural determinants of attitude toward Emotional AI in the workplace. AI Soc. 2023, 38, 97–119. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, N.; Lockey, S.; Curtis, C.; Pool, J.; Akbari, A. Trust in Artificial Intelligence: A Global Study; The University of Queensland: St Lucia, Australia; KPMG Australia: Sydney, Australia, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novozhilova, E.; Mays, K.; Paik, S.; Katz, J. Reply to Damaševičius, R. Comment on “Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366”. Mach. Learn. Knowl. Extr. 2024, 6, 1670-1672. https://doi.org/10.3390/make6030082
Novozhilova E, Mays K, Paik S, Katz J. Reply to Damaševičius, R. Comment on “Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366”. Machine Learning and Knowledge Extraction. 2024; 6(3):1670-1672. https://doi.org/10.3390/make6030082
Chicago/Turabian StyleNovozhilova, Ekaterina, Kate Mays, Sejin Paik, and James Katz. 2024. "Reply to Damaševičius, R. Comment on “Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366”" Machine Learning and Knowledge Extraction 6, no. 3: 1670-1672. https://doi.org/10.3390/make6030082
APA StyleNovozhilova, E., Mays, K., Paik, S., & Katz, J. (2024). Reply to Damaševičius, R. Comment on “Novozhilova et al. More Capable, Less Benevolent: Trust Perceptions of AI Systems across Societal Contexts. Mach. Learn. Knowl. Extr. 2024, 6, 342–366”. Machine Learning and Knowledge Extraction, 6(3), 1670-1672. https://doi.org/10.3390/make6030082