Analysis of Personality and EEG Features in Emotion Recognition Using Machine Learning Techniques to Classify Arousal and Valence Labels
Abstract
:1. Introduction
1.1. EEG and Emotion Recognition
1.2. HCI and Personality Traits
1.3. Related Works
1.4. EEG-Related Works
2. Materials and Methods
2.1. AMIGOS Dataset Experiment
2.2. AMIGOS Features
- For EEG features, we used the preprocessed signals from the AMIGOS dataset. The signals were averaged to the common reference, filtered with a band-pass frequency filter from 4.0 Hz to 45 Hz, EOG removal was applied and then segmentation was performed. We calculate the 105 EEG features reported in the AMIGOS experiment, which correspond to PSD and PSA between pairs of electrodes. PSD corresponds to the five bands correlated with emotion response: theta (3–7 Hz), slow alpha (8–10 Hz), alpha (8–13 Hz), beta (14–29 Hz), and gamma (30–47 Hz) for each electrode (70 features). PSD was obtained by Welch’s method (time window = 128 samples corresponding to 1 second) between 3 and 47 Hz and averaged over the frequency bands. PSA was calculated between each of the seven pairs of electrodes in the five frequency bands correlated with emotion response (35 features). These pair of electrodes comprised two electrodes located in the same scalp region, but on the opposite side of the head: AF3/AF4, F3/F4, F7/F8, FC5/FC6, T7/T8, P7/P8, and O1/O2.
- We also utilized age, sex, and the Big Five personality traits [56] (i.e., 7 features).
2.3. Added EEG Features
- FD is a measure of signal complexity. Because EEG signal are nonlinear and chaotic, a FD model can be applied in EEG data analysis [60]. We compute FD using the Higuchi algorithm for each of the 14 EEG signals (14 features).
- DE can be defined as the entropy of continuous random variables and is used to measure its complexity [61]. DE is equivalent to the logarithm of the energy spectrum (ES) in a certain frequency band for a fixed length EEG sequence [62]. We calculated ES as the average energy of EEG signals in the different five frequency bands for each electrode and applied the logarithm to obtain DE (70 features). DASM and RASM were calculated as the differences and ratios between the DE of the seven pairs of asymmetry electrodes (35 features for each trait).
2.4. Classifiers
- SVM is a linear model that use a decision boundary as a linear function to separate two classes with a line, a plane, or a hyperplane, fitting two parameters: regularization or margin maximization (C), and kernel. C determines the strength of the regularization. Higher values of C correspond to less regularization, trying to fit the training set as best as possible to each individual data point. With lower values of C, the algorithms will try to adjust to the majority of the data points. Kernels are mathematical functions that take data as input and transform it into the required form (i.e., linear radial basis function).
- Naïve Bayes is faster than linear models by looking at each feature individually, collecting simple per-class statistics from each feature.
- Random Forest, is a collection of decision trees, where each tree is slightly different from the others. With many trees (estimators) it is possible to reduce the overfitting by averaging the results of each tree. And with the tree deepness it is possible to splits the tree capturing more information about the data.
- Artificial neural network is a multi-layer fully-connected neural nets that consist of an input layer, multiple hidden layers with units, and an output layer. Each layer has an activation function to discriminate the data (i.e., relu, sigmoid).
3. Results
3.1. Feature Selection and Analysis for EEG Data, Demographic Characteristics, and Personality Traits to Predict Video Emotional Labels
3.1.1. Feature Importance
3.1.2. Univariate Selection
3.1.3. RFE with Cross-Validation
3.2. Feature Selection and Analysis for EEG, Demographic Characteristics, and Personaityl Traits to Predict Self-Assessed Traits Labels
3.2.1. Feature Importance
3.2.2. Univariate Selection
3.2.3. RFE with Cross-Validation
- We obtained 16 features for arousal label: PSD in slow alpha (AF3, T8) and gamma band (FC6), PSA index in the theta (FC5/FC6), alpha (T7/T8), and gamma (FC5/FC6) bands; and DE in the theta (F3, T7, O1, O2, F4), slow alpha (P8, AF4), alpha (T7), beta (FC6), and gamma (AF3) bands.
- We obtained 40 features for valence label: PSD in theta (P7, T8, AF4), slow alpha (AF3, T8), alpha (O1, T8), beta (T8, FC6), and gamma (T8, F8, AF4) bands, PSA index in the theta (F7/F8), slow alpha (AF3/AF4, F7/F8, T7/T8, O1/O2) alpha (FC5/FC6), and beta (F7/F8, O1/O2) band; FD in FC5, T7, O2 channels; DE in theta (F7, F3, F4), beta (F3, FC5, P8, F4, AF4), and gamma (AF3) bands; DASM for theta (AF3/AF4), alpha (P7/P8), and beta (F7/F8) bands; and RASM for beta (AF3/AF4, P7/P8), theta (AF3/AF4), slow alpha (O1/O2) and alpha (F7/F8) bands.
- We obtained 8 features for disgust: PSD in theta (AF3, F7, P7, AF4), slow alpha (AF3, FC5, P7, F4), alpha (F7, P7) and gamma (AF3, F3, AF4) band; PSA index in the beta band (P7/P8); and DASM and RASM for slow alpha and beta bands (F3/F4).
- We obtained only one feature for: sadness (PSD in theta band channel O2), fear (PSD in alpha band channel P8), happiness (PSD in gamma band channel F8), neutral (PSD in beta band channel P8), anger (PSD in alpha band channel FC6), and surprise (PSD in alpha band channel P7).
3.3. Classifiers
3.3.1. EEG Data, Sex, Age, and Personality Traits to Predict Video Emotional Labels
3.3.2. EEG Data, Sex, Age, and Personality Traits to Predict Self-Assessed Traits Labels
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jeon, M. Chapter 1 - Emotions and Affect in Human Factors and Human-Computer Interaction: Taxonomy, Theories, Approaches, and Methods. In Emotions and Affect in Human Factors and Human-Computer Interaction; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Rukavina, S.; Gruss, S.; Hoffmann, H.; Tan, J.-W.; Walter, S.; Traue, H.C. Affective computing and the impact of gender and age. PLoS ONE 2016, 11, e0150584. [Google Scholar] [CrossRef] [Green Version]
- Okon-Singer, H.; Hendler, T.; Pessoa, L.; Shackman, A.J. The neurobiology of emotion-cognition interactions: Fundamental questions and strategies for future research. Front. Hum. Neurosci. 2015, 9, 1–14. [Google Scholar]
- Laborde, S. Bridging the Gap between Emotion and Cognition: An Overview. Perform. Psychol. Percept. Act. Cognit. Emot. 2016, 275–289. [Google Scholar] [CrossRef]
- Lench, H.C.; Flores, S.A.; Bench, S.W. Discrete emotions predict changes in cognition, judgment, experience, behavior, and physiology: A meta-analysis of experimental emotion elicitations. Psychol. Bull. 2011, 137, 834–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinciarelli, A.; Mohammadi, G. A Survey of Personality Computing. IEEE Trans. Affect. Comput. 2014, 5, 273–291. [Google Scholar] [CrossRef] [Green Version]
- Pocius, K.E. Personality factors in human-computer interaction: A review of the literature. Comput. Human Behav. 1991, 7, 103–135. [Google Scholar] [CrossRef]
- Kim, K.H.; Bang, S.W.; Kim, S.R. Emotion recognition system using short-term monitoring of physiological signals. Med. Biol. Eng. Comput. 2004, 42, 419–427. [Google Scholar] [CrossRef]
- Russell, J. A circumplex model of affect. J. Pers. Soc. Psychol. 1980, 39, 1161–1178. [Google Scholar] [CrossRef]
- Tao, J.; Tan, T. Affective computing: A review. Affect. Comput. Intell. Interact. 2005, 3784, 981–995. [Google Scholar]
- Al-Nafjan, A.; Hosny, M.; Al-Ohali, Y.; Al-Wabil, A. Review and Classification of Emotion Recognition Based on EEG Brain-Computer Interface System Research: A Systematic Review. Appl. Sci. 2017, 7, 1239. [Google Scholar] [CrossRef] [Green Version]
- Coogan, C.G.; He, B. Brain-Computer Interface Control in a Virtual Reality Environment and Applications for the Internet of Things. IEEE Access 2018, 6, 10840–10849. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; Kim, M.; Oh, E.; Kim, S.-P. A Review on the Computational Methods for Emotional State Estimation from the Human EEG. Comput. Math. Methods Med. 2013, 2013, 1–13. [Google Scholar]
- Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2017, 3045, 1–20. [Google Scholar] [CrossRef]
- Liu, Y.; Sourina, O.; Nguyen, M.K. Real-time EEG-based human emotion recognition and visualization. In Proceedings of the 2010 International Conference on Cyberworlds, Singapore, 20–22 October 2010; pp. 262–269. [Google Scholar]
- Jatupaiboon, N.; Pan-Ngum, S.; Israsena, P. Emotion classification using minimal EEG channels and frequency bands. In Proceedings of the 2013 10th International Joint Conference on Computer Science and Software Engineering, Maha Sarakham, Thailand, 29–31 May 2013; pp. 21–24. [Google Scholar]
- Balconi, M.; Mazza, G. Brain oscillations and BIS/BAS (behavioral inhibition/activation system) effects on processing masked emotional cues. ERS/ERD and coherence measures of alpha band. Int. J. Psychophysiol. 2009, 74, 158–165. [Google Scholar] [CrossRef]
- Vecchiato, G.; Toppi, J.; Astolfi, L.; Fallani, F.D.V.; Cincotti, F.; Mattia, D.; Bez, F.; Babiloni, F. Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Med. Biol. Eng. Comput. 2011, 49, 579–583. [Google Scholar] [CrossRef]
- Davidson, R.J. Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 1992, 20, 125–151. [Google Scholar] [CrossRef]
- Li, M.; Lu, B.L. Emotion classification based on gamma-band EEG. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, Minneapolis, MN, USA, 3–6 September 2009; pp. 1323–1326. [Google Scholar]
- Park, K.S.; Choi, H.; Lee, K.J.; Lee, J.Y.; An, K.O.; Kim, E.J. Emotion recognition based on the asymmetric left and right activation. Int. J. Med. Med. Sci. 2011, 3, 201–209. [Google Scholar]
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science, 5th ed.; McGraw-Hill: New York, NY, USA, 2013. [Google Scholar]
- American Psychological Association. “Personality,” APA. 2015. Available online: https://www.apa.org/topics/personality/ (accessed on 13 April 2020).
- Eysenck, H.J.; Eysenck, S.B.G. Manual of the Eysenck Personality Questionnaire: (EPQ-R Adult); EdITS/Educational and Industrial Testing Service: San Diego, CA, USA, 1994. [Google Scholar]
- McCrae, R.R.; Costa, P.T., Jr. A Five-Factor theory of personality. In Handbook of Personality: Theory and Research, 2nd ed.; Guilford Press: New York, NY, USA, 1999; pp. 139–153. [Google Scholar]
- Gray, J.A. A Critique of Eysenck’s Theory of Personality. In A Model for Personality; Springer: Berlin/Heidelberger, Germany, 1981; pp. 246–276. [Google Scholar]
- Ashton, M.C.; Lee, K.; Perugini, M.; Szarota, P.; de Vries, R.E.; Di Blas, L.; Boies, K.; De Raad, B. A Six-Factor Structure of Personality-Descriptive Adjectives: Solutions from Psycholexical Studies in Seven Languages. J. Pers. Soc. Psychol. 2004, 86, 356–366. [Google Scholar] [CrossRef]
- Li, H.; Pang, N.; Guo, S.; Wang, H. Research on textual emotion recognition incorporating personality factor. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 2222–2227. [Google Scholar]
- Omheni, N.; Kalboussi, A.; Mazhoud, O.; Kacem, A.H. Annotation-Based Learner’S Personality Modeling in Distance Learning Context. Turkish Online J. Distance Educ. 2016, 17, 46–62. [Google Scholar] [CrossRef]
- Wei, W.L.; Wu, C.H.; Lin, J.C.; Li, H. Interaction style detection based on Fused Cross-Correlation Model in spoken conversation. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 8495–8499. [Google Scholar]
- Fallahnezhad, M.; Vali, M.; Khalili, M. Automatic Personality Recognition from reading text speech. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 18–23. [Google Scholar]
- Batrinca, L.; Mana, N.; Lepri, B.; Sebe, N.; Pianesi, F. Multimodal Personality Recognition in Collaborative Goal-Oriented Tasks. IEEE Trans. Multimed. 2016, 18, 659–673. [Google Scholar] [CrossRef]
- Alam, F.; Riccardi, G. Predicting personality traits using multimodal information. In Proceedings of the 2014 Workshop on Computational Personality Recognition, Workshop of MM 2014, WCPR 2014, Orlando, FL, USA, 7 November 2014; pp. 15–18. [Google Scholar]
- Batrinca, L.; Lepri, B.; Pianesi, F. Multimodal recognition of personality during short self-presentations. In Proceedings of the 2011 ACM Multimedia Conference and Co-Located Workshops - JHGBU 2011 Workshop, J-HGBU’11, MM’11, Scottsdale, AZ, USA, 1 December 2011; pp. 27–28. [Google Scholar]
- Guo, A.; Ma, J. Archetype-based modeling of persona for comprehensive personality computing from personal big data. Sensors 2018, 18, 684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celli, F.; Lepri, B. Is Big Five better than MBTI ? A personality computing challenge using Twitter data. In Proceedings of the CEUR Workshop, Torino, Italy, 10–12 December 2018; Volume 2253. [Google Scholar]
- Callejas-Cuervo, M.; Martínez-Tejada, L.A.; Botero-Fagua, J.A. Architecture of an emotion recognition and video games system to identify personality traits. In Proceedings of the VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, 26–28 October 2017; pp. 42–45. [Google Scholar]
- Hu, K.; Guo, S.; Pang, N.; Wang, H. An intensity-based personalized affective model. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO, Sanya, China, 15–18 December 2007; pp. 2212–2215. [Google Scholar]
- Wei, X.S.; Zhang, C.L.; Zhang, H.; Wu, J. Deep Bimodal Regression of Apparent Personality Traits from Short Video Sequences. IEEE Trans. Affect. Comput. 2018, 9, 303–315. [Google Scholar] [CrossRef]
- Nasoz, F.; Lisetti, C.L.; Vasilakos, A.V. Affectively intelligent and adaptive car interfaces. Inf. Sci. NY 2010, 180, 3817–3836. [Google Scholar] [CrossRef]
- Anzalone, S.M.; Varni, G.; Ivaldi, S.; Chetouani, M. Automated Prediction of Extraversion During Human–Humanoid Interaction. Int. J. Soc. Robot. 2017, 9, 385–399. [Google Scholar] [CrossRef]
- Bhin, H.; Lim, Y.; Park, S.; Choi, J. Automated psychophysical personality data acquisition system for human-robot interaction. In Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2017, Jeju, Korea, 28 June–1 July 2017; pp. 159–160. [Google Scholar]
- Cai, R.; Guo, A.; Ma, J.; Huang, R.; Yu, R.; Yang, C. Correlation Analyses Between Personality Traits and Personal Behaviors Under Specific Emotion States Using Physiological Data from Wearable Devices. In Proceedings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 46–53. [Google Scholar]
- Miranda-Correa, J.A.; Patras, I. A Multi-Task Cascaded Network for Prediction of Affect, Personality, Mood and Social Context Using EEG Signals. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 373–380. [Google Scholar]
- Mittermeier, V.; Leicht, G.; Karch, S.; Hegerl, U.; Möller, H.-J.; Pogarell, O.; Mulert, C. Attention to emotion: Auditory-evoked potentials in an emotional choice reaction task and personality traits as assessed by the NEO FFI. Eur. Arch. Psychiatry Clin. Neurosci. 2011, 261, 111–120. [Google Scholar] [CrossRef]
- Subramanian, R.; Wache, J.; Abadi, M.; Vieriu, R.; Winkler, S.; Sebe, N. Ascertain: Emotion and personality recognition using commercial sensors. IEEE Trans. Affect. Comput. 2018, 9, 147–160. [Google Scholar] [CrossRef]
- Mueller, C.J.; Kuchinke, L. Individual differences in emotion word processing: A diffusion model analysis. Cogn. Affect. Behav. Neurosci. 2016, 16, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Carver, C.S.; Sutton, S.K.; Scheier, M.F. Action, Emotion, and Personality: Emerging Conceptual Integration. Personal. Soc. Psychol. Bull. 2000, 26, 741–751. [Google Scholar] [CrossRef]
- Allers, R. Emotion and Personality; Columbia University Press: New York, NY, USA, 1961; Volume 35. [Google Scholar]
- John, O.P.; Gross, J.J. Healthy and Unhealthy Emotion Regulation: Personality Processes, Individual Differences, and Life Span Development. J. Pers. 2004, 72, 1301–1334. [Google Scholar] [CrossRef]
- Miranda Correa, J.A.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups. IEEE Trans. Affective Comput. 2018, 1. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.L.; Lu, B.L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Wu, D.; Courtney, C.G.; Lance, B.J.; Narayanan, S.S.; Dawson, M.E.; Oie, K.S.; Parsons, T.D. Optimal arousal identification and classification for affective computing using physiological signals: Virtual reality stroop task. IEEE Trans. Affect. Comput. 2010, 1, 109–118. [Google Scholar] [CrossRef]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis using Physiological Signals. IEEE Trans. Affective Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.-L.; Liu, W.; Lu, Y.; Lu, B.-L.; Cichocki, A. EmotionMeter: A Multimodal Framework for Recognizing Human Emotions. IEEE Trans. Cybern. 2019, 49, 1110–1122. [Google Scholar] [CrossRef] [PubMed]
- Raad, B.D.; Perugini, M. Big Five Assessment; Hogrefe & Huber Publishers: Ashland, OH, USA, 2002. [Google Scholar]
- Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG Features in Cross-Subject Emotion Recognition. Front. Neurosci. 2018, 12, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenke, R.; Peer, A.; Buss, M. Feature Extraction and Selection for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2014, 5, 327–339. [Google Scholar] [CrossRef]
- Becker, H.; Fleureau, J.; Guillotel, P.; Wendling, F.; Merlet, I.; Albera, L. Emotion recognition based on high-resolution EEG recordings and reconstructed brain sources. IEEE Trans. Affect. Comput. 2017. [Google Scholar] [CrossRef]
- Sourina, O.; Liu, Y. A Fractal-based Algorithm of Emotion Recognition from EEG using Arousal-Valence Model. In Proceedings of the BIOSIGNALS International Conference on Bio-Inspired Systems and Signal, Rome, Italy, 26–29 January 2011; pp. 209–214. [Google Scholar]
- Chen, D.-W.; Miao, R.; Yang, W.-Q.; Liang, Y.; Chen, H.-H.; Huang, L.; Deng, C.-J.; Han, N. A Feature Extraction Method Based on Differential Entropy and Linear Discriminant Analysis for Emotion Recognition. Sensors 2019, 19, 1631. [Google Scholar] [CrossRef] [Green Version]
- Duan, R.-N.; Zhu, J.-Y.; Lu, B.-L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 81–84. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef]
- Guyon, I. Feature Extraction Foundations and Applications; Springer: Berlin/Heidelberger, Germany, 2006. [Google Scholar]
- Saeys, Y.; Inza, I.; Larranaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Huan, L.; Hiroshi, M. Computational Methods of Feature Selection, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Boschetti, A.; Massaron, L. Python Data Science Essentials, 2nd ed.; Packt Publishing: Birmingham, UK, 2016. [Google Scholar]
- Zhao, S.; Ding, G.; Han, J.; Gao, Y. Personality-aware personalized emotion recognition from physiological signals. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; pp. 1660–1667. [Google Scholar]
Arousal–Valence | Arousal | Valence | |||
---|---|---|---|---|---|
Feature | Score (%) | Feature | Score (%) | Feature | Score (%) |
Agreeableness | 0.2936 | Agreeableness | 0.2936 | Emotional stability | 0.3120 |
Extroversion | 0.2752 | Extroversion | 0.2752 | Agreeableness | 0.2907 |
Emotional stability | 0.2636 | Emotional stability | 0.2636 | Conscientiousness | 0.2896 |
Age | 0.2557 | Age | 0.2557 | Extroversion | 0.2790 |
Creativity/openness | 0.2550 | Creativity/openness | 0.2550 | Age | 0.2779 |
Conscientiousness | 0.2304 | Conscientiousness | 0.2304 | Creativity/openness | 0.2613 |
Sex | 0.2054 | Sex | 0.2054 | Sex | 0.2316 |
(a) | ||||||||||||||
n | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 |
Channel | AF3 | F7 | F3 | FC5 | T7 | P7 | O1 | O2 | P8 | T8 | FC6 | F4 | F8 | AF4 |
(b) | ||||||||||||||
n | 01 | 02 | 03 | 04 | 05 | 06 | 07 | |||||||
Pair | AF3/AF4 | F3/F4 | F7/F8 | FC5/FC6 | T7/T8 | P7/P8 | O1/O2 |
Scenario | Classifiers | Label | EEG Data, Demographic Characteristics, and Personality Traits (First Set of Features) | EEG Data, Demographic Characteristics, and Personality Traits (Reduction) (Second Set of Features) | ||||
---|---|---|---|---|---|---|---|---|
Mean Accuracy | Mean F1 | Mean AUC | Mean Accuracy | Mean F1 | Mean AUC | |||
Valence–arousal | SVM linear | HAHV | 0.61 | 0.14 | 0.61 | 0.75 | 0.00 | 0.50 |
HALV | 0.61 | 0.23 | 0.49 | 0.74 | 0.00 | 0.51 | ||
LAHV | 0.64 | 0.15 | 0.54 | 0.76 | 0.00 | 0.48 | ||
LALV | 0.61 | 0.15 | 0.55 | 0.75 | 0.00 | 0.49 | ||
SVM RBF | HAHV | 0.60 | 0.20 | 0.49 | 0.75 | 0.00 | 0.56 | |
HALV | 0.63 | 0.28 | 0.46 | 0.74 | 0.00 | 0.51 | ||
LAHV | 0.66 | 0.24 | 0.48 | 0.76 | 0.00 | 0.48 | ||
LALV | 0.60 | 0.19 | 0.49 | 0.75 | 0.00 | 0.48 | ||
Arousal | SVM linear | 0.48 | 0.46 | 0.53 | 0.52 | 0.49 | 0.51 | |
SVM RBF | 0.50 | 0.49 | 0.51 | 0.50 | 0.45 | 0.43 | ||
Naïve Bayes | 0.44 | 0.51 | 0.45 | 0.51 | 0.24 | 0.51 | ||
Random Forest | 0.44 | 0.39 | 0.39 | 0.44 | 0.40 | 0.43 | ||
ANN | 0.51 | 0.13 | 0.47 | 0.52 | 0.21 | 0.54 | ||
Valence | SVM linear | 0.49 | 0.50 | 0.55 | 0.51 | 0.55 | 0.45 | |
SVM RBF | 0.47 | 0.49 | 0.52 | 0.52 | 0.59 | 0.44 | ||
Naïve Bayes | 0.42 | 0.31 | 0.43 | 0.54 | 0.43 | 0.55 | ||
Random Forest | 0.44 | 0.48 | 0.39 | 0.49 | 0.51 | 0.50 | ||
ANN | 0.50 | 0.34 | 0.47 | 0.51 | 0.67 | 0.56 |
Scenario | Classifiers | AMIGOS | EEG Data, Demographic Characteristics, and Personality Traits (Third Set of Features) | EEG Data, Demographic Characteristics, and Personality Traits (Reduction) (Fourth Set of Features) | ||||
---|---|---|---|---|---|---|---|---|
F1 | Mean Accuracy | Mean F1 | Mean AUC | Mean Accuracy | Mean F1 | Mean AUC | ||
Arousal | SVM linear | 0.592 | 0.63 | 0.60 | 0.66 | 0.62 | 0.58 | 0.65 |
SVM RBF | 0.68 | 0.67 | 0.71 | 0.64 | 0.63 | 0.67 | ||
Naïve Bayes | 0.54 | 0.60 | 0.57 | 0.59 | 0.60 | 0.62 | ||
Random Forest | 0.64 | 0.61 | 0.69 | 0.63 | 0.61 | 0.69 | ||
ANN | 0.52 | 0.20 | 0.54 | 0.52 | 0.04 | 0.62 | ||
Valence | SVM linear | 0.576 | 0.53 | 0.56 | 0.47 | 0.61 | 0.65 | 0.62 |
SVM RBF | 0.52 | 0.56 | 0.46 | 0.59 | 0.64 | 0.62 | ||
Naïve Bayes | 0.50 | 0.59 | 0.47 | 0.52 | 0.67 | 0.49 | ||
Random Forest | 0.52 | 0.60 | 0.50 | 0.53 | 0.60 | 0.55 | ||
ANN | 0.51 | 0.49 | 0.47 | 0.53 | 0.63 | 0.53 | ||
Sadness | SVM linear | 0.59 | 0.29 | 0.47 | 0.71 | 0.00 | 0.52 | |
SVM RBF | 0.62 | 0.35 | 0.57 | 0.70 | 0.18 | 0.60 | ||
Naïve Bayes | 0.52 | 0.32 | 0.49 | 0.67 | 0.30 | 0.62 | ||
Random Forest | 0.67 | 0.09 | 0.61 | 0.67 | 0.16 | 0.57 | ||
ANN | 0.71 | 0.00 | 0.53 | 0.71 | 0.00 | 0.55 | ||
Fear | SVM linear | 0.64 | 0.16 | 0.53 | 0.79 | 0.00 | 0.46 | |
SVM RBF | 0.71 | 0.20 | 0.48 | 0.79 | 0.00 | 0.49 | ||
Naïve Bayes | 0.30 | 0.32 | 0.43 | 0.79 | 0.00 | 0.53 | ||
Random Forest | 0.78 | 0.00 | 0.47 | 0.66 | 0.16 | 0.50 | ||
ANN | 0.79 | 0.00 | 0.47 | 0.79 | 0.00 | 0.48 | ||
Happiness | SVM linear | 0.76 | 0.11 | 0.50 | 0.88 | 0.00 | 0.49 | |
SVM RBF | 0.80 | 0.08 | 0.50 | 0.88 | 0.00 | 0.56 | ||
Naïve Bayes | 0.42 | 0.19 | 0.45 | 0.85 | 0.12 | 0.59 | ||
Random Forest | 0.87 | 0.00 | 0.50 | 0.87 | 0.03 | 0.56 | ||
ANN | 0.88 | 0.00 | 0.46 | 0.88 | 0.00 | 0.41 | ||
Neutral | SVM linear | 0.59 | 0.34 | 0.55 | 0.70 | 0.19 | 0.61 | |
SVM RBF | 0.6 | 0.44 | 0.63 | 0.69 | 0.37 | 0.62 | ||
Naïve Bayes | 0.50 | 0.49 | 0.60 | 0.68 | 0.15 | 0.61 | ||
Random Forest | 0.70 | 0.23 | 0.60 | 0.67 | 0.25 | 0.61 | ||
ANN | 0.70 | 0.00 | 0.49 | 0.70 | 0.00 | 0.50 | ||
Disgust | SVM linear | 0.80 | 0.20 | 0.52 | 0.89 | 0.00 | 0.52 | |
SVM RBF | 0.85 | 0.25 | 0.64 | 0.88 | 0.10 | 0.56 | ||
Naïve Bayes | 0.33 | 0.21 | 0.53 | 0.43 | 0.20 | 0.56 | ||
Random Forest | 0.88 | 0.00 | 0.63 | 0.88 | 0.03 | 0.63 | ||
ANN | 0.89 | 0.00 | 0.59 | 0.89 | 0.00 | 0.49 | ||
Anger | SVM linear | 0.54 | 0.33 | 0.50 | 0.61 | 0.01 | 0.49 | |
SVM RBF | 0.53 | 0.36 | 0.43 | 0.63 | 0.09 | 0.55 | ||
Naïve Bayes | 0.39 | 0.52 | 0.52 | 0.53 | 0.40 | 0.54 | ||
Random Forest | 0.58 | 0.18 | 0.50 | 0.60 | 0.27 | 0.49 | ||
ANN | 0.60 | 0.05 | 0.47 | 0.63 | 0.00 | 0.48 | ||
Surprise | SVM linear | 0.76 | 0.18 | 0.41 | 0.86 | 0.00 | 0.57 | |
SVM RBF | 0.78 | 0.18 | 0.39 | 0.85 | 0.00 | 0.56 | ||
Naïve Bayes | 0.32 | 0.27 | 0.54 | 0.46 | 0.24 | 0.56 | ||
Random Forest | 0.85 | 0.03 | 0.51 | 0.84 | 0.02 | 0.54 | ||
ANN | 0.86 | 0.00 | 0.53 | 0.86 | 0.00 | 0.61 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Tejada, L.A.; Maruyama, Y.; Yoshimura, N.; Koike, Y. Analysis of Personality and EEG Features in Emotion Recognition Using Machine Learning Techniques to Classify Arousal and Valence Labels. Mach. Learn. Knowl. Extr. 2020, 2, 99-124. https://doi.org/10.3390/make2020007
Martínez-Tejada LA, Maruyama Y, Yoshimura N, Koike Y. Analysis of Personality and EEG Features in Emotion Recognition Using Machine Learning Techniques to Classify Arousal and Valence Labels. Machine Learning and Knowledge Extraction. 2020; 2(2):99-124. https://doi.org/10.3390/make2020007
Chicago/Turabian StyleMartínez-Tejada, Laura Alejandra, Yasuhisa Maruyama, Natsue Yoshimura, and Yasuharu Koike. 2020. "Analysis of Personality and EEG Features in Emotion Recognition Using Machine Learning Techniques to Classify Arousal and Valence Labels" Machine Learning and Knowledge Extraction 2, no. 2: 99-124. https://doi.org/10.3390/make2020007
APA StyleMartínez-Tejada, L. A., Maruyama, Y., Yoshimura, N., & Koike, Y. (2020). Analysis of Personality and EEG Features in Emotion Recognition Using Machine Learning Techniques to Classify Arousal and Valence Labels. Machine Learning and Knowledge Extraction, 2(2), 99-124. https://doi.org/10.3390/make2020007