Next Article in Journal
Semi-Supervised Faster RCNN-Based Person Detection and Load Classification for Far Field Video Surveillance
Previous Article in Journal
Optimal Clustering and Cluster Identity in Understanding High-Dimensional Data Spaces with Tightly Distributed Points
Open AccessArticle

Generalization of Parameter Selection of SVM and LS-SVM for Regression

1
National Institute for Environmental Studies, Tsukuba, Ibaraki 305-0053, Japan
2
Department of Environmental Science, Hainan University, Haikou 570228, China
*
Author to whom correspondence should be addressed.
Mach. Learn. Knowl. Extr. 2019, 1(2), 745-755; https://doi.org/10.3390/make1020043
Received: 28 March 2019 / Revised: 30 May 2019 / Accepted: 17 June 2019 / Published: 19 June 2019
(This article belongs to the Section Learning)
A Support Vector Machine (SVM) for regression is a popular machine learning model that aims to solve nonlinear function approximation problems wherein explicit model equations are difficult to formulate. The performance of an SVM depends largely on the selection of its parameters. Choosing between an SVM that solves an optimization problem with inequality constrains and one that solves the least square of errors (LS-SVM) adds to the complexity. Various methods have been proposed for tuning parameters, but no article puts the SVM and LS-SVM side by side to discuss the issue using a large dataset from the real world, which could be problematic for existing parameter tuning methods. We investigated both the SVM and LS-SVM with an artificial dataset and a dataset of more than 200,000 points used for the reconstruction of the global surface ocean CO2 concentration. The results reveal that: (1) the two models are most sensitive to the parameter of the kernel function, which lies in a narrow range for scaled input data; (2) the optimal values of other parameters do not change much for different datasets; and (3) the LS-SVM performs better than the SVM in general. The LS-SVM is recommended, as it has less parameters to be tuned and yields a smaller bias. Nevertheless, the SVM has advantages of consuming less computer resources and taking less time to train. The results suggest initial parameter guesses for using the models. View Full-Text
Keywords: support vector machine for regression; SVM; LS-SVM; machine learning; parameter optimization; global ocean CO2 support vector machine for regression; SVM; LS-SVM; machine learning; parameter optimization; global ocean CO2
Show Figures

Figure 1

MDPI and ACS Style

Zeng, J.; Tan, Z.-H.; Matsunaga, T.; Shirai, T. Generalization of Parameter Selection of SVM and LS-SVM for Regression. Mach. Learn. Knowl. Extr. 2019, 1, 745-755.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Back to TopTop