Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives
Abstract
:1. Introduction
2. The Particle Swarm Optimization: Historical Overview
3. Working Mechanism of the canonical PSO
4. Perspectives on Development
4.1. Inertia Weight
4.1.1. Random Selection (RS)
4.1.2. Linear Time Varying (LTV)
4.1.3. Nonlinear Time Varying (NLTV)
4.1.4. Fuzzy Adaptive (FA)
4.2. Constriction Factor
4.3. Cognition and Social Velocity Models of the Swarm
4.4. Cognitive and Social Acceleration Coefficients
Choice of Values
4.5. Topologies
4.6. Analysis of Convergence
4.7. Velocity and Position Update Equations of the Standard PSO
4.8. Survey of Hybridization Approaches
4.8.1. Hybridization of PSO using Genetic Algorithms (GA)
4.8.2. Hybridization of PSO Using Differential Evolution (DE)
4.8.3. Hybridization of PSO Using Simulated Annealing (SA)
4.8.4. Hybridization of PSO Using Ant Colony Optimization (ACO)
4.8.5. Hybridization of PSO Using Cuckoo Search (CS)
4.8.6. Hybridization of PSO Using Artificial Bee Colony (ABC)
4.8.7. Hybridization of PSO Using Other Social Metaheuristic Approaches
Artificial Immune Systems (AIS)
Bat Algorithm (BA)
Firefly Algorithm (FA)
Glow Worm Swarm Optimization (GSO)
4.9. Parallelized Implementations of PSO
5. Niche Formation and Multi-objective Optimization
5.1. Formation of Niches in PSO
5.2. Niching in Dynamic Environments and Challenges
6. Discrete Hyperspace Optimization
6.1. Variable Round-Off
6.2. Binarization
6.3. Set Theoretic Approaches
6.4. Penalty Approaches
6.5. Hybrid Approaches
6.6. Some Application Instances
7. Ensemble Particle Swarm Optimization
8. Notes on Benchmark Solution Quality and Performance Comparison Practices
8.1. Performance on Simple Benchmarks
8.2. Studies on Performance Comparison Practices
9. Future Directions
- Parameter sensitivity: Solution quality of metaheuristics like PSO are sensitive to their parametric evolutions. This means that the same strategy of parameter selection does not work for every problem.
- Convergence to local optima: Unless the basic PSO is substantially modified to take into account the modalities of the objective function, more often than not it falls prey to local optima in the search space for sufficiently complex objective functions.
- Subpar performance in multi-objective optimization for high dimensional problems: Although niching techniques render acceptable solutions for multimodal functions in both static and dynamic environments, the solution quality falls sharply when the dimensionality of the problem increases.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975. [Google Scholar]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W.B. Particle swarm optimization with particles having quantum behavior. In Proceedings of the IEEE Congress on Evolutionary Computation, Portland, OR, USA, 19–23 June 2004; pp. 325–331. [Google Scholar]
- Sun, J.; Xu, W.B.; Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems, Singapore, 1–3 December 2004; pp. 111–116. [Google Scholar]
- Reeves, W.T. Particle systems—A technique for modelling a class of fuzzy objects. ACM Trans. Graph. 1983, 2, 91–108. [Google Scholar] [CrossRef]
- Reynolds, C.W. Flocks, herds, and schools: A distributed behavioral model. ACM Comput. Graph. 1987, 21, 25–34. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the 7th International Conference on Computation Programming VII, London, UK, 25–27 March 1998. [Google Scholar]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Particle Swarm Optimization: Developments, Applications and Resources. In Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 27–30. [Google Scholar]
- Suganthan, P.N. Particle Swarm Optimiser with Neighborhood Operator. In Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; pp. 1958–1962. [Google Scholar]
- Ratnaweera, A.; Halgamuge, S.; Watson, H. Particle Swarm Optimization with Self-Adaptive Acceleration Coefficients. In Proceedings of the First International Conference on Fuzzy Systems and Knowledge Discovery, Guilin, China, 14–17 October 2003; pp. 264–268. [Google Scholar]
- Zheng, Y.; Ma, L.; Zhang, L.; Qian, J. On the Convergence Analysis and Parameter Selection in Particle Swarm Optimization. In Proceedings of the International Conference on Machine Learning and Cybernetics, Xi’an, China, 5 November 2003; Volume 3, pp. 1802–1807. [Google Scholar]
- Zheng, Y.; Ma, L.; Zhang, L.; Qian, J. Empirical Study of Particle Swarm Optimizer with Increasing Inertia Weight. In Proceedings of the IEEE Congress on Evolutionary Computation, Canberra, ACT, Australia, 8–12 December 2003; pp. 221–226. [Google Scholar]
- Naka, S.; Genji, T.; Yura, T.; Fukuyama, Y. Practical Distribution State Estimation using Hybrid Particle Swarm Optimization. In Proceedings of the IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 28 January–1 February 2001; Volume 2, pp. 815–820. [Google Scholar]
- Clerc, M. Think Locally, Act Locally: The Way of Life of Cheap-PSO, an Adaptive PSO. Technical Report. 2001. Available online: http://clerc.maurice.free.fr/pso/ (accessed on 8 October 2018).
- Shi, Y.; Eberhart, R.C. Fuzzy Adaptive Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 101–106. [Google Scholar]
- Eberhart, R.C.; Simpson, P.K.; Dobbins, R.W. Computational Intelligence PC Tools, 1st ed.; Academic Press Professional: Cambridge, MA, USA, 1996. [Google Scholar]
- Clerc, M.; Kennedy, J. The Particle Swarm-Explosion, Stability and Convergence in a Multidimensional Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Clerc, M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1951–1957. [Google Scholar]
- Eberhart, R.C.; Shi, Y. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 84–88. [Google Scholar]
- Kennedy, J. The Particle Swarm: Social Adaptation of Knowledge. In Proceedings of the IEEE International Conference on Evolutionary Computation, Indianapolis, IN, USA, 13–16 April 1997; pp. 303–308. [Google Scholar]
- Carlisle, A.; Dozier, G. Adapting Particle Swarm Optimization to Dynamic Environments. In Proceedings of the International Conference on Artificial Intelligence, Langkawi, Malaysia, 20–22 September 2000; pp. 429–434. [Google Scholar]
- Stacey, A.; Jancic, M.; Grundy, I. Particle Swarm Optimization with Mutation. In Proceedings of the 2003 Congress on Evolutionary Computation, Canberra, ACT, Australia, 8–12 December 2003; pp. 1425–1430. [Google Scholar]
- Jie, X.; Deyun, X. New Metropolis Coefficients of Particle Swarm Optimization. In Proceedings of the 2008 Chinese Control and Decision Conference, Yantai, Shandong, China, 2–4 July 2008; pp. 3518–3521. [Google Scholar]
- Kirkpatrick, S.; Gelatt, C.; Vecci, M. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnaweera, A.; Halgamuge, S.; Watson, H. Particle Swarm Optimization with Time Varying Acceleration Coefficients. In Proceedings of the International Conference on Soft Computing and Intelligent Systems, Coimbatore, India, 26–28 July 2002; pp. 240–255. [Google Scholar]
- Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the 2002 Congress on Evolutionary Computation, CEC’02, Honolulu, HI, USA, 12–17 May 2002. [Google Scholar]
- Kennedy, J. Small Worlds and Mega-Minds: Effects of Neighbourhood Topology on Particle Swarm Performance. In Proceedings of the IEEE Congress on Evolutionary Computation, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1931–1938. [Google Scholar]
- Kennedy, J.; Mendes, R. Population Structure and Particle Swarm. In Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; pp. 1671–1676. [Google Scholar]
- Mendes, R.; Kennedy, J.; Neves, J. Watch thy Neighbour or How the Swarm can Learn from its Environment. In Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 26 April 2003; pp. 88–94. [Google Scholar]
- Liu, Q.; Wei, W.; Yuan, H.; Zhan, Z.H.; Li, Y. Topology selection for particle swarm optimization. Inf. Sci. 2016, 363, 154–173. [Google Scholar] [CrossRef]
- van den Bergh, F. An Analysis of Particle Swarm Optimizers. Ph.D. Thesis, Department of Computer Science, University of Pretoria, Pretoria, South Africa, 2002. [Google Scholar]
- van den Bergh, F.; Engelbrecht, A.P. A Study of Particle Swarm Optimization Particle Trajectories. Inf. Sci. 2006, 176, 937–971. [Google Scholar] [CrossRef]
- Trelea, L.C. The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Robinson, J.; Sinton, S.; Rahmat-Samii, Y. Particle Swarm, Genetic Algorithm, and Their Hybrids: Optimization of a Profiled Corrugated Horn Antenna. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, San Antonio, TX, USA, 16–21 June 2002; Volume 1, pp. 314–317. [Google Scholar]
- Shi, X.; Lu, Y.; Zhou, C.; Lee, H.; Lin, W.; Liang, Y. Hybrid Evolutionary Algorithms Based on PSO and GA. In Proceedings of the IEEE Congress on Evolutionary Computation, Rio de Janeiro, Brazil, 13–15 December 2003; Volume 4, pp. 2393–2399. [Google Scholar]
- Yang, B.; Chen, Y.; Zhao, Z. A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems. In Proceedings of the IEEE International Conference on Control and Automation, Guangzhou, China, 30 May–1 June 2007; pp. 166–170. [Google Scholar]
- Li, T.; Xu, L.; Shi, X.W. A hybrid of genetic algorithm and particle swarm optimization for antenna design. PIERS Online 2008, 4, 56–60. [Google Scholar]
- Valdez, F.; Melin, P.; Castillo, O. Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In Proceedings of the IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 20–24 August 2009; pp. 2114–2119. [Google Scholar]
- Ghamisi, P.; Benediktsson, J.A. Feature selection based on hybridization of genetic algorithm and particle swarm optimization. IEEE Geosci. Remote Sens. Lett. 2015, 12, 309–313. [Google Scholar] [CrossRef]
- Benvidi, A.; Abbasi, S.; Gharaghani, S.; Tezerjani, M.D.; Masoum, S. Spectrophotometric determination of synthetic colorants using PSO-GA-ANN. Food Chem. 2017, 220, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wei, Y.-M.; Wang, K.A. PSO–GA optimal model to estimate primary energy demand of China. Energy Policy 2012, 42, 329–340. [Google Scholar] [CrossRef]
- Moussa, R.; Azar, D. A PSO-GA approach targeting fault-prone software modules. J. Syst. Softw. 2017, 132, 41–49. [Google Scholar] [CrossRef]
- Nik, A.A.; Nejad, F.M.; Zakeri, H. Hybrid PSO and GA approach for optimizing surveyed asphalt pavement inspection units in massive network. Autom. Constr. 2016, 71, 325–345. [Google Scholar] [CrossRef]
- Premalatha, K.; Natarajan, A.M. Discrete PSO with GA operators for document clustering. Int. J. Recent Trends Eng. 2009, 1, 20–24. [Google Scholar]
- Abdel-Kader, R.F. Genetically improved PSO algorithm for efficient data clustering. In Proceedings of the International Conference on Machine Learning and Computing, Bangalore, India, 9–11 September 2010; pp. 71–75. [Google Scholar]
- Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016, 274, 292–305. [Google Scholar] [CrossRef]
- Zhang, Q.; Ogren, R.M.; Kong, S.C. A comparative study of biodiesel engine performance optimization using enhanced hybrid PSO–GA and basic GA. Appl. Energy 2016, 165, 676–684. [Google Scholar] [CrossRef]
- Li, C.; Zhai, R.; Liu, H.; Yang, Y.; Wu, H. Optimization of a heliostat field layout using hybrid PSO-GA algorithm. Appl. Therm. Eng. 2018, 128, 33–41. [Google Scholar] [CrossRef]
- Krink, T.; Løvbjerg, M. The lifecycle model: Combining particle swarm optimization, genetic algorithms and hill climbers. Proc. Parallel Prob. Solvl. From Nat. 2002, 621–630. [Google Scholar] [CrossRef]
- Conradie, E.; Miikkulainen, R.; Aldrich, C. Intelligent process control utilising symbiotic memetic neuro-evolution. In Proceedings of the IEEE Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 1, pp. 623–628. [Google Scholar]
- Grimaldi, E.A.; Grimacia, F.; Mussetta, M.; Pirinoli, P.; Zich, R.E. A new hybrid genetical—Swarm algorithm for electromagnetic optimization. In Proceedings of the International Conference on Computational Electromagnetics and its Applications, Beijing, China, 1–4 November 2004; pp. 157–160. [Google Scholar]
- Juang, C.F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2004, 34, 997–1006. [Google Scholar] [CrossRef]
- Settles, M.; Soule, T. Breeding swarms: A GA/PSO hybrid. In Proceedings of the Genetic and Evolutionary Computation Conference 2005, Washington, DC, USA, 25–29 June 2005; pp. 161–168. [Google Scholar]
- Jian, M.; Chen, Y. Introducing recombination with dynamic linkage discovery to particle swarm optimization. In Proceedings of the Genetic and Evolutionary Computation Conference 2006, Seattle, DC, USA, 8–12 July 2006; pp. 85–86. [Google Scholar]
- Esmin, A.A.; Lambert-Torres, G.; Alvarenga, G.B. Hybrid evolutionary algorithm based on PSO and GA mutation. In Proceedings of the 6th International Conference on Hybrid Intelligent Systems, Rio de Janeiro, Brazil, 13–15 December 2006; pp. 57–62. [Google Scholar]
- Kim, H. Improvement of genetic algorithm using PSO and Euclidean data distance. Int. J. Inf. Technol. 2006, 12, 142–148. [Google Scholar]
- Mohammadi, A.; Jazaeri, M. A hybrid particle swarm optimization-genetic algorithm for optimal location of SVC devices in power system planning. In Proceedings of the 42nd International Universities Power Engineering Conference, Brighton, UK, 4–6 September 2007; pp. 1175–1181. [Google Scholar]
- Gandelli, A.; Grimaccia, F.; Mussetta, M.; Pirinoli, P.; Zich, R.E. Development and Validation of Different Hybridization Strategies between GA and PSO. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 2782–2787. [Google Scholar]
- Kao, Y.T.; Zahara, E. A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Appl. Soft Comput. 2008, 8, 849–857. [Google Scholar] [CrossRef]
- Kuo, R.J.; Hong, C.W. Integration of genetic algorithm and particle swarm optimization for investment portfolio optimization. Appl. Math. Inf. Sci. 2013, 7, 2397–2408. [Google Scholar] [CrossRef]
- Price, K.; Storn, R. Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces; Technical Report; International Computer Science Institute: Berkeley, UK, 1995. [Google Scholar]
- Hendtlass, T. A Combined Swarm differential evolution algorithm for optimization problems. In Lecture Notes in Computer Science, Proceedings of 14th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems; Springer Verlag: Berlin/Heidelberg, Germany, 2001; Volume 2070, pp. 11–18. [Google Scholar]
- Zhang, W.J.; Xie, X.F. DEPSO: Hybrid particle swarm with differential evolution operator. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMCC), Washington, DC, USA, 8 October 2003; pp. 3816–3821. [Google Scholar]
- Talbi, H.; Batouche, M. Hybrid particle swarm with differential evolution for multimodal image registration. In Proceedings of the IEEE International Conference on Industrial Technology, Hammamet, Tunisia, 8–10 December 2004; Volume 3, pp. 1567–1573. [Google Scholar]
- Hao, Z.-F.; Gua, G.-H.; Huang, H. A particle swarm optimization algorithm with differential evolution. In Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; pp. 1031–1035. [Google Scholar]
- Das, S.; Abraham, A.; Konar, A. Particle swarm optimization and differential evolution algorithms: Technical analysis, applications and hybridization perspectives. In Advances of Computational Intelligence in Industrial Systems, Studies in Computational Intelligence; Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.P., Eds.; Springer Verlag: Berlin/Heidelberg, Germany, 2008; pp. 1–38. [Google Scholar]
- Luitel, B.; Venayagamoorthy, G.K. Differential evolution particle swarm optimization for digital filter design. In Proceedings of the Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 3954–3961. [Google Scholar]
- Vaisakh, K.; Sridhar, M.; Linga Murthy, K.S. Differential evolution particle swarm optimization algorithm for reduction of network loss and voltage instability. In Proceedings of the IEEE World Congress on Nature and Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 391–396. [Google Scholar]
- Huang, H.; Wei, Z.H.; Li, Z.Q.; Rao, W.B. The back analysis of mechanics parameters based on DEPSO algorithm and parallel FEM. In Proceedings of the International Conference on Computational Intelligence and Natural Computing, Wuhan, China, 6–7 June 2009; pp. 81–84. [Google Scholar]
- James, G. Malone Automated Mesh Decomposition and Concurrent Finite Element Analysis for Hypercube Multiprocessor Computers. Comput. Methods Appl. Mech. Eng. 1988, 70, 27–58. [Google Scholar]
- Farhat, G. Implementation Aspects of Concurrent Finite Element Computations in Parallel Computations and Their Impact on Computational Mechanics; ASME: New York, NY, USA, 1987. [Google Scholar]
- Rehak, D.R.; Baugh, J.W. Alternative Programming Techniques for Finite Element Program Development. In Proceedings of the IABSE Colloquium on Expert Systems in Civil Engineering, Bergamo, Italy, 16–20 October 1989. [Google Scholar]
- Logozzo, F. Modular Static Analysis of Object-Oriented Languages. Ph.D. Thesis, Ecole Polytechnique, Paris, France, June 2004. [Google Scholar]
- Xu, R.; Xu, J.; Wunsch, D.C., II. Clustering with differential evolution particle swarm optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Xiao, L.; Zuo, X. Multi-DEPSO: A DE and PSO Based Hybrid Algorithm in Dynamic Environments. In Proceedings of the WCCI 2012 IEEE World Congress on Computational Intelligence, Brisbane, Australia, 10–15 June 2012. [Google Scholar]
- Junfei, H.; Liling, M.A.; Yuandong, Y.U. Hybrid Algorithm Based Mobile Robot Localization Using DE and PSO. In Proceedings of the 32nd International Conference on Control and Automation, Xi’an, China, 26–28 July 2013; pp. 5955–5959. [Google Scholar]
- Sahu, B.K.; Pati, S.; Panda, S. Hybrid differential evolution particle swarm optimisation optimised fuzzy proportional–integral derivative controller for automatic generation control of interconnected power system. IET Gen. Transm. Distrib. 2014, 8, 1789–1800. [Google Scholar] [CrossRef]
- Seyedmahmoudian, M.; Rahmani, R.; Mekhilef, S.; Oo, A.M.T.; Stojcevski, A.; Soon, T.K.; Ghandhari, A.S. Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. IEEE Trans. Sustain. Energy 2015, 6, 850–862. [Google Scholar] [CrossRef]
- Gomes, P.V.; Saraiva, J.T. Hybrid Discrete Evolutionary PSO for AC Dynamic Transmission Expansion Planning. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016. [Google Scholar]
- Boonserm, P.; Sitjongsataporn, S. A robust and efficient algorithm for numerical optimization problem: DEPSO-Scout: A new hybrid algorithm based on DEPSO and ABC. In Proceedings of the 2017 International Electrical Engineering Congress, Pattaya, Thailand, 8–10 March 2017; pp. 1–4. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Q.; Yu, D.; Chen, X.; Yang, Y. A hybrid algorithm based on PSO and simulated annealing and its applications for partner selection in virtual enterprises. Adv. Intell. Comput. 2005, 3644, 380–385. [Google Scholar]
- Yang, G.; Chen, D.; Zhou, G. A new hybrid algorithm of particle swarm optimization. Lect. Notes Comput. Sci. 2006, 4115, 50–60. [Google Scholar]
- Gao, H.; Feng, B.; Hou, Y.; Zhu, L. Training RBF neural network with hybrid particle swarm optimization. In ISNN 2006; Wang, J., Yi, Z., Urada, J.M., Lu, B., Urada, J.M., Lu, B.-L., Yin, H., Eds.; Springer: Heidelberg, Germany, 2006; Volume 3971, pp. 577–583. [Google Scholar]
- Lichman, M. UCI Machine Learning Repository; University of California, School of Information and Computer Science: Irvine, CA, USA, 2013. [Google Scholar]
- Chu, S.C.; Tsai, P.; Pan, J.S. Parallel Particle Swarm Optimization Algorithms with Adaptive Simulated Annealing; Studies in Computational Intelligence Book Series; Springer: Berlin/Heidelberg, Germany, 2006; Volume 31, pp. 261–279. [Google Scholar]
- Sadati, N.; Amraee, T.; Ranjbar, A. A global particle swarm-based-simulated annealing optimization technique for under-voltage load shedding problem. Appl. Soft Comput. 2009, 9, 652–657. [Google Scholar] [CrossRef]
- Ma, P.C.; Tao, F.; Liu, Y.L.; Zhang, L.; Lu, H.X.; Ding, Z. A hybrid particle swarm optimization and simulated annealing algorithm for job-shop scheduling. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), Taipei, Taiwan, 18–22 August 2014; pp. 125–130. [Google Scholar]
- Ge, H.; Du, W.; Qian, F. A Hybrid Algorithm Based on Particle Swarm Optimization and Simulated Annealing for Job Shop Scheduling. In Proceedings of the Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; pp. 715–719. [Google Scholar]
- Zhang, X.-F.; Koshimura, M.; Fujita, H.; Hasegawa, R. An efficient hybrid particle swarm optimization for the job shop scheduling problem. In Proceedings of the 2011 IEEE International Conference on Fuzzy Systems, Taipei, Taiwan, 27–30 June 2011; pp. 622–626. [Google Scholar]
- Song, X.; Cao, Y.; Chang, C. A Hybrid Algorithm of PSO and SA for Solving JSP. In Proceedings of the 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 18–20 October 2008; pp. 111–115. [Google Scholar]
- Dong, X.; Ouyang, D.; Cai, D.; Zhang, Y.; Ye, Y. A hybrid discrete PSO-SA algorithm to find optimal elimination orderings for Bayesian networks. In Proceedings of the 2010 2nd International Conference on Industrial and Information Systems, Dalian, China, 10–11 July 2010; pp. 510–513. [Google Scholar]
- Shieh, H.-L.; Kuo, C.-C.; Chiang, C.-M. Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl. Math. Comput. 2011, 218, 4365–4383. [Google Scholar] [CrossRef]
- Idoumghar, L.; Melkemi, M.; Schott, R.; Aouad, M.I. Hybrid PSO-SA Type Algorithms for Multimodal Function Optimization and Reducing Energy Consumption in Embedded Systems. Appl. Comput. Intell. Soft Comput. 2011, 2011, 138078. [Google Scholar] [CrossRef]
- Tajbakhsh, A.; Eshghi, K.; Shamsi, A. A hybrid PSO-SA algorithm for the travelling tournament problem. Eur. J. Ind. Eng. 2012, 6, 2–25. [Google Scholar] [CrossRef]
- Niknam, T.; Narimani, M.R.; Jabbari, M. Dynamic optimal power flow using hybrid particle swarm optimization and simulated annealing. Int. Trans. Electr. Energy Syst. 2013, 23, 975–1001. [Google Scholar] [CrossRef]
- Sudibyo, S.; Murat, M.N.; Aziz, N. Simulated Annealing Particle Swarm Optimization (SA-PSO): Particle distribution study and application in Neural Wiener-based NMPC. In Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 31 May–3 June 2015. [Google Scholar]
- Wang, X.; Sun, Q. The Study of K-Means Based on Hybrid SA-PSO Algorithm. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; pp. 211–214. [Google Scholar]
- Javidrad, F.; Nazari, M. A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl. Soft Comput. 2017, 60, 634–654. [Google Scholar] [CrossRef]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equations of state calculations by fast computing machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Li, P.; Cui, N.; Kong, Z.; Zhang, C. Energy management of a parallel plug-in hybrid electric vehicle based on SA-PSO algorithm. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 June 2017; pp. 9220–9225. [Google Scholar]
- Colorni, A.; Dorigo, M.; Maniezzo, V. Distributed Optimization by Ant Colonies. In Actes de la Première Conférence Européenne sur la vie Artificielle, Paris, France; Elsevier Publishing: Amsterdam, The Netherlands, 1991; pp. 134–142. [Google Scholar]
- Shelokar, P.S.; Siarry, P.; Jayaraman, V.K.; Kulkarni, B.D. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 2007, 188, 129–142. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 2009, 65, 1558–1568. [Google Scholar] [CrossRef]
- Kaveh, A.; Talatahari, S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures. Comput. Struct. 2009, 87, 267–283. [Google Scholar] [CrossRef]
- Niknam, T.; Amiri, B. An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 2010, 10, 183–197. [Google Scholar] [CrossRef]
- Chen, S.M.; Chien, C. Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques. Expert Syst. Appl. 2011, 38, 14439–14450. [Google Scholar] [CrossRef]
- Xiong, W.; Wang, C. A novel hybrid clustering based on adaptive ACO and PSO. In Proceedings of the 2011 International Conference on Computer Science and Service System (CSSS), Nanjing, China, 27–29 June 2011; pp. 1960–1963. [Google Scholar]
- Kıran, M.S.; Özceylan, E.; Gündüz, M.; Paksoy, T. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey. Energy Convers. Manag. 2012, 53, 75–83. [Google Scholar] [CrossRef]
- Huang, C.L.; Huang, W.C.; Chang, H.Y.; Yeh, Y.C.; Tsai, C.Y. Hybridization strategies for continuous ant colony optimization and particle swarm optimization applied to data clustering. Appl. Soft Comput. 2013, 13, 3864–3872. [Google Scholar] [CrossRef]
- Mahi, M.; Baykan, Ö.K.; Kodaz, H. A new hybrid method based on Particle Swarm Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling Salesman Problem. Appl. Soft Comput. 2015, 30, 484–490. [Google Scholar] [CrossRef]
- Kefi, S.; Rokbani, N.; Krömer, P.; Alimi, A.M. A New Ant Supervised PSO Variant Applied to Traveling Salesman Problem. In Proceedings of the The 15th International Conference on Hybrid Intelligent Systems (HIS), Seoul, Korea, 16–18 November 2015; pp. 87–101. [Google Scholar]
- Lazzus, J.A.; Rivera, M.; Salfate, I.; Pulgar-Villarroel, G.; Rojas, P. Application of particle swarm+ant colony optimization to calculate the interaction parameters on phase equilibria. J. Eng. Thermophys. 2016, 25, 216–226. [Google Scholar] [CrossRef]
- Mandloi, M.; Bhatia, V. A low-complexity hybrid algorithm based on particle swarm and ant colony optimization for large-MIMO detection. Expert Syst. Appl. 2016, 50, 66–74. [Google Scholar] [CrossRef]
- Indadul, K.; Maiti, M.K.; Maiti, M. Coordinating Particle Swarm Optimization, Ant Colony Optimization and K-Opt Algorithm for Traveling Salesman Problem. In Proceedings of the Mathematics and Computing: Third International Conference, ICMC 2017, Haldia, India, 17–21 January 2017; Springer: Singapore, 2017; pp. 103–119. [Google Scholar]
- Liu, Y.; Feng, M.; Shahbazzade, S. The Container Truck Route Optimization Problem by the Hybrid PSO-ACO Algorithm, Intelligent Computing Theories and Application. In Proceedings of the 13th International Conference, ICIC 2017, Liverpool, UK, 7–10 August 2017; pp. 640–648. [Google Scholar]
- Lu, J.; Hu, W.; Wang, Y.; Li, L.; Ke, P.; Zhang, K. A Hybrid Algorithm Based on Particle Swarm Optimization and Ant Colony Optimization Algorithm, Smart Computing and Communication. In Proceedings of the First International Conference (SmartCom 2016), Shenzhen, China, 17–19 December 2016; pp. 22–31. [Google Scholar]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Ghodrati, A.; Lotfi, S. A hybrid cs/ga algorithm for global optimization. In Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), Kaohsiung, Taiwan, 20–22 December 2011; pp. 397–404. [Google Scholar]
- Nawi, N.M.; Rehman, M.Z.; Aziz, M.A.; Herawan, T.; Abawajy, J.H. Neural network training by hybrid accelerated cuckoo particle swarm optimization algorithm. In Proceedings of the International Conference on Neural Information Processing; Springer International Publishing: Berlin/Heidelberg, Germany, November 2014; pp. 237–244. [Google Scholar]
- Enireddy, V.; Kumar, R.K. Improved cuckoo search with particle swarm optimization for classification of compressed images. Sadhana 2015, 4, 2271–2285. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, M.; Wang, C.; Xu, H. P2P traffic identification using support vector machine and cuckoo search algorithm combined with particle swarm optimization algorithm. In Frontiers in Internet Technologies; Springer: Berlin/Heidelberg, Germany, 2014; pp. 118–132. [Google Scholar]
- Li, X.T.; Yin, M.H. A particle swarm inspired cuckoo search algorithm for real parameter optimization. Soft Comput. 2016, 20, 1389–1413. [Google Scholar] [CrossRef]
- Chen, J.F.; Do, Q.H.; Hsieh, H.N. Training Artificial Neural Networks by a Hybrid PSO-CS Algorithm. Algorithms 2015, 8, 292–308. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Sun, Z.; Tang, H.; Jia, X.; Wang, S.; Yan, X.; Ye, G.; Wu, G. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization. Discr. Dyn. Nat. Soc. 2016, 2016, 1516271. [Google Scholar] [CrossRef]
- Chi, R.; Su, Y.; Zhang, D.; Chi, X.X.; Zhang, H.J. A hybridization of cuckoo search and particle swarm optimization for solving optimization problems. Neural Comput Appl. 2017. [Google Scholar] [CrossRef]
- Dash, J.; Dam, B.; Swain, R. Optimal design of linear phase multi-band stop filters using improved cuckoo search particle swarm optimization. Appl. Soft Comput. 2017, 52, 435–445. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Li, H.; Guan, R.; Wang, L.; Liang, Y. An integrated algorithm based on artificial bee colony and particle swarm optimization. In Proceedings of the 2010 Sixth International Conference on Natural Computation (ICNC), Yantai, China, 10–12 August 2010; Volume 5, pp. 2586–2590. [Google Scholar]
- El-Abd, M. A hybrid ABC-SPSO algorithm for continuous function optimization. In Proceedings of the 2011 IEEE Symposium on Swarm Intelligence, Paris, France, 11–15 April 2011; pp. 1–6. [Google Scholar]
- Kıran, M.S.; Gündüz, M. A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl. Soft Comput. 2013, 13, 2188–2203. [Google Scholar] [CrossRef]
- Xiang, Y.; Peng, Y.; Zhong, Y.; Chen, Z.; Lu, X.; Zhong, X. A particle swarm inspired multi-elitist artificial bee colony algorithm for real-parameter optimization. Comput. Optim. Appl. 2014, 57, 493–516. [Google Scholar] [CrossRef]
- Vitorino, L.N.; Ribeiro, S.F.; Bastos-Filho, C.J. A mechanism based on Artificial Bee Colony to generate diversity in Particle Swarm Optimization. Neurocomputing 2015, 148, 39–45. [Google Scholar] [CrossRef]
- Lin, K.; Hsieh, Y. Classification of medical datasets using SVMs with hybrid evolutionary algorithms based on endocrine-based particle swarm optimization and artificial bee colony algorithms. J. Med. Syst. 2015, 39, 119. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yang, Y. An Improved Artificial Bee Colony Algorithm Based on Particle Swarm Optimization and Differential Evolution. In Intelligent Computing Theories and Methodologies: 11th International Conference, ICIC 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 24–35. [Google Scholar]
- Li, Z.; Wang, W.; Yan, Y.; Li, Z. PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Expert Syst. Appl. 2015, 42, 8881–8895. [Google Scholar] [CrossRef]
- Sedighizadeh, D.; Mazaheripour, H. Optimization of multi objective vehicle routing problem using a new hybrid algorithm based on particle swarm optimization and artificial bee colony algorithm considering Precedence constraints. Alexandria Eng. J. 2017. [Google Scholar] [CrossRef]
- Farmer, J.D.; Packard, N.H.; Perelson, A. The Immune System, Adaptation, and Machine Learning. Physica D 1986, 22, 187–204. [Google Scholar] [CrossRef]
- Bersini, H.; Varela, F.J. Hints for adaptive problem solving gleaned from immune networks. In Parallel Problem Solving from Nature, PPSN 1990; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 496. [Google Scholar]
- Forrest, S.; Perelson, A.S.; Allen, L.; Cherukuri, R. Self-Nonself Discrimination in a Computer. In Proceeding of 1994 IEEE Symposium on Research in Security and Privacy; IEEE Computer Society Press: Los Alamos, CA, USA, 1994. [Google Scholar]
- Kephart, J.O. A biologically inspired immune system for computers. In Proceedings of the Artificial Life IV: The Fourth International Workshop on the Synthesis and Simulation of Living Systems, Cambridge, MA, USA, 6–8 July 1994; pp. 130–139. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nicso 2010: Nature Inspired Cooperative Strategies; Springer: Berlin, Germany, 2010; pp. 65–74. [Google Scholar]
- Yang, X.S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications. SAGA 2009; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5792. [Google Scholar]
- Krishnanand, K.N.; Ghose, D. Multimodal Function Optimization using a Glowworm Metaphor with Applications to Collective Robotics. In Proceedings of the 2nd Indian International Conference on Artificial, Pune, India, 20–22 December 2005; pp. 328–346. [Google Scholar]
- Zhao, F.; Li, G.; Yang, C.; Abraham, A.; Liu, H. A human–computer cooperative particle swarm optimization based immune algorithm for layout design. Neurocomputing 2014, 132, 68–78. [Google Scholar] [CrossRef]
- El-Sherbiny, M.M.; Alhamali, R.M. A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem. Comput. Ind. Eng. 2013, 64, 610–620. [Google Scholar] [CrossRef]
- Pan, T.S.; Dao, T.K.; Nguyen, T.T.; Chu, S.C. Hybrid Particle Swarm Optimization with Bat Algorithm. In Genetic and Evolutionary Computing; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2015; Volume 329. [Google Scholar]
- Manoj, S.; Ranjitha, S.; Suresh, H.N. Hybrid BAT-PSO optimization techniques for image registration. In Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 3590–3596. [Google Scholar]
- Xia, X.; Gui, L.; He, G.; Xie, C.; Wei, B.; Xing, Y.; Wu, R.; Tang, Y. A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm. J. Comput. Sci. 2018, 26, 488–500. [Google Scholar] [CrossRef]
- Arunachalam, S.; AgnesBhomila, T.; Ramesh Babu, M. Hybrid Particle Swarm Optimization Algorithm and Firefly Algorithm Based Combined Economic and Emission Dispatch Including Valve Point Effect. In Swarm, Evolutionary, and Memetic Computing. SEMCCO 2014; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 8947. [Google Scholar]
- Shi, Y.; Wang, Q.; Zhang, H. Hybrid ensemble PSO-GSO algorithm. In Proceedings of the 2012 IEEE 2nd International Conference on Cloud Computing and Intelligence Systems, Hangzhou, China, 30 October–1 November 2012; pp. 114–117. [Google Scholar]
- Liu, H.; Zhou, F. PSO algorithm based on GSO and application in the constrained optimization. In Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Advances in Intelligent Systems Research, AISR; Atlantis Press: Paris, France, 2013; Volume 34, ISSN 1951-6851. [Google Scholar]
- Gies, D.; Rahmat-Samii, Y. Reconfigurable array design using parallel particle swarm optimization. In Proceedings of the Antennas and Propagation Society International Symposium, Columbus, OH, USA, 22–27 June 2003. [Google Scholar]
- Schutte, J.F.; Reinbolt, J.A.; Fregly, B.J.; Haftka, R.T.; George, A.D. Parallel Global Optimization with the Particle Swarm Algorithm. Int. J. Numer. Meth. Eng. 2004, 61, 2296–2315. [Google Scholar] [CrossRef] [PubMed]
- Venter, G.; Sobieszczanski-Sobieski, J. A parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. In Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 30 May–3 June 2005. [Google Scholar]
- Chang, J.-F.; Chu, S.-C.; Roddick, J.F.; Pan, J.S. A parallel particle swarm optimization algorithm with communication strategies. J. Inf. Sci. Eng. 2005, 21, 809–818. [Google Scholar]
- Waintraub, M.; Schirru, R.; Pereira, C.M.N.A. Multiprocessor modeling of parallel Particle Swarm Optimization applied to nuclear engineering problems. Prog. Nucl. Energy 2009, 51, 680–688. [Google Scholar] [CrossRef]
- Rymut, B.; Kwolek, B. GPU-supported object tracking using adaptive appearance models and Particle Swarm Optimization. In Proceedings of the 2010 International Conference on Computer Vision and Graphics: Part II, ICCVG’10; Springer-Verlag: Berlin/Heidelberg, Germany, 2010; pp. 227–234. [Google Scholar]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proc. F Radar Signal Process. 1993, 140, 107–113. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, T.-S.; Pan, J.-S. A parallel hybrid evolutionary particle filter for nonlinear state estimation. In Proceedings of the 2011 First International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, 21–23 November 2011; pp. 308–312. [Google Scholar]
- Chen, R.-B.; Hsu, Y.-W.; Hung, Y.; Wang, W. Discrete particle swarm optimization for constructing uniform design on irregular regions. Comput. Stat. Data Anal. 2014, 72, 282–297. [Google Scholar] [CrossRef]
- Awwad, O.; Al-Fuqaha, A.; Ben Brahim, G.; Khan, B.; Rayes, A. Distributed topology control in large-scale hybrid RF/FSO networks: SIMT GPU-based particle swarm optimization approach. Int. J. Commun. Syst. 2013, 26, 888–911. [Google Scholar] [CrossRef]
- Qu, J.; Liu, X.; Sun, M.; Qi, F. GPU-Based Parallel Particle Swarm Optimization Methods for Graph Drawing. Discr. Dyn. Nat. Soc. 2017, 2017, 2013673. [Google Scholar] [CrossRef]
- Zhou, Y.; Tan, Y. GPU-based parallel particle swarm optimization. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009; pp. 1493–1500. [Google Scholar]
- Mussi, L.; Daolio, F.; Cagnoni, S. Evaluation of parallel particle swarm optimization algorithms within the CUDA™ architecture. Inf. Sci. 2011, 181, 4642–4657. [Google Scholar] [CrossRef]
- Parsopoulos, K.E.; Plagianakos, V.P.; Magoulas, G.D.; Vrahatis, M.N. Improving particle swarm optimizer by function “stretching”. Nonconvex Optim. Appl. 2001, 54, 445–457. [Google Scholar]
- Parsopoulos, K.E.; Plagianakos, V.P.; Magoulas, G.D.; Vrahatis, M.N. Stretching technique for obtaining global minimizers through particle swarm optimization. In Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, IN, USA, 6–7 April 2001; pp. 22–29. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. Modification of the particle swarm optimizer for locating all the global minima. In Artificial Neural Networks and Genetic Algorithms; Computer Science Series; Springer: Wien, Germany, 2001; pp. 324–327. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 211–224. [Google Scholar] [CrossRef]
- Brits, R.; Engelbrecht, A.P.; van den Bergh, F. Solving systems of unconstrained equations using particle swarm optimization. In Proceedings of the IEEE 2002 Conference on Systems, Man, and Cybernetics, Yasmine Hammamet, Tunisia, 6–9 October 2002. [Google Scholar]
- Brits, R.; Engelbrecht, A.P.; van den Bergh, F. A niching particle swarm optimizer. In Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL’02), Singapore, 18–22 November 2002; Volume 2, pp. 692–696. [Google Scholar]
- Li, X. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization. In GECCO 2004. LNCS; Springer: Heidelberg, Germany, 2004; Volume 3102, pp. 105–116. [Google Scholar]
- Bird, S. Adaptive Techniques for Enhancing the Robustness and Performance of Speciated Psos in Multimodal Environments. Ph.D. Thesis, RMIT University, Melbourne, Australia, 2008. [Google Scholar]
- Bird, S.; Li, X. Adaptively choosing niching parameters in a PSO. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2006, Seattle, WA, USA, 8–12 July 2006; Cattolico, M., Ed.; ACM: New York, NY, USA, 2006; pp. 3–10. [Google Scholar]
- Li, X. Multimodal function optimization based on fitness-euclidean distance ratio. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2007), London, UK, 7–11 July 2007; pp. 78–85. [Google Scholar]
- Kennedy, J. Stereotyping: Improving particle swarm performance with cluster analysis. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), La Jolla, CA, USA, 16–19 July 2000; pp. 303–308. [Google Scholar]
- Passaro, A.; Starita, A. Particle swarm optimization for multimodal functions: A clustering approach. J. Artif. Evol. Appl. 2008, 1–15. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Blackwell, T.M.; Branke, J. Multi-swarm optimization in dynamic environments. In EvoWorkshops 2004. LNCS; Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., et al., Eds.; Springer: Heidelberg, Germany, 2004; Volume 3005, pp. 489–500. [Google Scholar]
- Bird, S.; Li, X. Using regression to improve local convergence. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1555–1562. [Google Scholar]
- Parrott, D.; Li, X. Locating and tracking multiple dynamic optima by a particle swarm model using speciation. IEEE Trans. Evol. Comput. 2006, 10, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Li, X. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 2010, 14, 150–169. [Google Scholar] [CrossRef]
- Afshinmanesh, F.; Marandi, A.; Rahimi-Kian, A. A novel binary particle swarm optimization method using artificial immune system. In Proceedings of the EUROCON 2005—The International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005; pp. 217–220. [Google Scholar]
- Deligkaris, K.V.; Zaharis, Z.D.; Kampitaki, D.G.; Goudos, S.K.; Rekanos, I.T.; Spasos, M.N. Thinned planar array design using Boolean PSO with velocity mutation. IEEE Trans. Magn. 2009, 45, 1490–1493. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J.; Chung, H.; Zhong, W.; Wu, W.; Shi, Y. A novel set-based particle swarm optimization method for discrete optimization problems. IEEE Trans. Evol. Comput. 2010, 14, 278–300. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, J.; Liu, O.; Huang, R.; Chung, H.; Shi, Y. Optimizing vehicle routing problem with time windows: A discrete particle swarm optimization approach. IEEE Trans. Syst. Man Cybern. 2012, 42, 254–267. [Google Scholar] [CrossRef]
- Solomon, M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 1987, 35, 254–265. [Google Scholar] [CrossRef]
- Kitayama, S.; Arakawa, M.; Yamazaki, K. Penalty function approach for the mixed discrete nonlinear problems by particle swarm optimization. Struct. Multidiscip. Optim. 2006, 32, 191–202. [Google Scholar] [CrossRef]
- Nema, S.; Goulermas, J.; Sparrow, G.; Cook, P. A hybrid particle swarm branch-and-bound (HPB) optimizer for mixed discrete nonlinear programming. IEEE Trans. Syst. Man Cybern. Part A 2008, 38, 1411–1424. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, J.; Pan, J.; Zhang, Y. PSO with Constraint-Preserving Mechanism for Mixed-Variable Optimization Problems. In Proceedings of the 2011 First International Conference on Robot, Vision and Signal Processing, Kaohsiung, Taiwan, 21–23 November 2011; pp. 149–153. [Google Scholar]
- Chowdhury, S.; Zhang, J.; Messac, A. Avoiding premature convergence in a mixed-discrete particle swarm optimization (MDPSO) algorithm. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2012. No. AIAA 2012-1678. [Google Scholar]
- Laskari, E.; Parsopoulos, K.; Vrahatis, M. Particle swarm optimization for integer programming. In Proceedings of the IEEE Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1582–1587. [Google Scholar]
- Yare, Y.; Venayagamoorthy, G.K. Optimal Scheduling of Generator Maintenance Using Modified Discrete Particle Swarm Optimization. In Proceedings of the Symposium on Bulk Power System Dynamics and Control—VII. Revitalizing Operational Reliability, 2007 iREP, Institute of Electrical and Electronics Engineers (IEEE), Charleston, SC, USA, 19–24 August 2007. [Google Scholar]
- Eajal, A.A.; El-Hawary, M.E. Optimal capacitor placement and sizing in unbalanced distribution systems with harmonics consideration using particle swarm optimization. IEEE Trans. Power Del. 2010, 25, 1734–1741. [Google Scholar] [CrossRef]
- Phung, M.D.; Quach, C.H.; Dinh, T.H.; Ha, Q. Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection. Autom. Constr. 2017, 81, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Gong, M.G.; Yan, J.N.; Shen, B.; Ma, L.J.; Cai, Q. Influence maximization in social networks based on discrete particle swarm optimization. Inform. Sci. 2016, 367–368, 600–614. [Google Scholar] [CrossRef]
- Aminbakhsh, S.; Sonmez, R. Discrete particle swarm optimization method for the large-scale discrete time–cost trade-off problem. Expert Syst. Appl. 2016, 51, 177–185. [Google Scholar] [CrossRef]
- Li, L.; Jiao, L.; Zhao, J.; Shang, R.; Gong, M. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering. Pattern Recogit. 2017, 63, 1–14. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ates, A.; Alagoz, B.B.; Kavuran, G.; Yeroglu, C. Implementation of fractional order filters discretized by modified Fractional Order Darwinian Particle Swarm Optimization. Measurement 2017, 107, 153–164. [Google Scholar] [CrossRef]
- Du, W.; Li, B. Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 2008, 178, 3096–3109. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, A.P. Heterogeneous particle swarm optimization. In Swarm Intelligence; Springer: Berlin/Heidelberg, Germany, 2010; pp. 191–202. [Google Scholar]
- Lynn, N.; Suganthan, P.N. Ensemble particle swarm optimizer. Appl. Soft Comput. 2017, 55, 533–548. [Google Scholar] [CrossRef]
- Shirazi, M.Z.; Pamulapati, T.; Mallipeddi, R.; Veluvolu, K.C. Particle Swarm Optimization with Ensemble of Inertia Weight Strategies. In Advances in Swarm Intelligence. ICSI 2017; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10385. [Google Scholar]
- Lynn, N.; Suganthan, P.N. Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 2015, 24, 11–24. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Mirjalili, S.; Hashim, S.Z.M. A new hybrid PSOGSA algorithm for function optimization. In Proceedings of the 2010 International Conference on Computer and Information Application, Tianjin, China, 3–5 December 2010; pp. 374–377. [Google Scholar]
- Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Kvasov, E.D.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl. Math. Comput. 2018, 318, 245–259. [Google Scholar] [CrossRef]
- Kvasov, D.E.; Mukhametzhanov, M.S. One-dimensional global search: Nature-inspired vs. lipschitz methods. AIP Conf. Proc. 2016, 1738, 400012. [Google Scholar]
- Gaviano, M.; Kvasov, D.E.; Lera, D.; Sergeyev, Y.D. Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480. [Google Scholar] [CrossRef]
- Sergeyev, Y.D.; Kvasov, D.E. Global search based on efficient diagonal partitions and a set of Lipschitz constants. SIAM J. Optim. 2006, 16, 910–937. [Google Scholar] [CrossRef]
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Robinson et al. [36] | 2002 | GA-PSO, PSO-GA | Engineering design optimization |
Krink and Løvbjerg [51] | 2002 | Life Cycle Model | Unconstrained global optimization |
Conradie et al. [52] | 2002 | SMNE | Neural Networks |
Grimaldi et al. [53] | 2004 | GSO | Electromagnetic Application |
Juang [54] | 2004 | GA-PSO | Network Design |
Settles and Soule [55] | 2005 | Breeding Swarm | Unconstrained Global Optimization |
Jian and Chen [56] | 2006 | PSO-RDL | Unconstrained Global Optimization |
Esmin et al. [57] | 2006 | HPSOM | Unconstrained Global Optimization |
Kim [58] | 2006 | GA-PSO | Unconstrained Global Optimization |
Mohammadi and Jazaeri [59] | 2007 | PSO-GA | Power Systems |
Gandelli et al. [60] | 2007 | GSO | Unconstrained Global Optimization |
Yang et al. [38] | 2007 | HEA | Constrained and Unconstrained Global Optimization |
Kao and Zahara [61] | 2008 | GA-PSO | Unconstrained Global Optimization |
Premlatha and Natrajan [46] | 2009 | DPSO-mutation-crossover | Document Clustering |
Abdel Kader [47] | 2010 | GAI-PSO | Data Clustering |
Kuo and Hong [62] | 2013 | HGP1, HGP2 | Investment Portfolio Optimization |
Ghamisi and Benedictsson [41] | 2015 | GA-PSO | Feature Selection |
Benvidi et al [42] | 2016 | GA-PSO | Spectrophotometric determination of synthetic colorants |
Yu et al. [43] | 2011 | GA-PSO | Estimation of Energy Demand |
Moussa and Azar [44] | 2017 | PSO-GA | Classification |
Nik, Nejad and Zakeri [45] | 2016 | GA-PSO, PSO-GA | Optimization of Surveyed Asphalt Pavement Inspection Unit |
Garg [48] | 2015 | GA-PSO | Constrained Optimization |
Zhang et al. [49] | 2015 | PSO-GA | Biodiesel Engine Performance Optimization |
Li et al. [50] | 2018 | PSO-GA | Optimization of a heliostat field layout |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Hendtlass [64] | 2001 | SDEA | Unconstrained Global Optimization |
Zhang and Xie [65] | 2003 | DEPSO | Unconstrained Global Optimization |
Talbi and Batouche [66] | 2004 | DEPSO | Rigid-body Multimodal Image Registration |
Hao et al. [67] | 2007 | DEPSO | Unconstrained Global Optimization |
Das et al. [68] | 2008 | PSO-DV | Design Optimization |
Luitel and Venayagamoorthy [69] | 2008 | DEPSO | Linear Phase FIR Filter Design |
Vaisakh et al. [70] | 2009 | DEPSO | Power Dispatch |
Huang et al. [71] | 2009 | DEPSO-ParallelFEM | Back Analysis of Mechanics Parameters |
Xu et al. [76] | 2010 | DEPSO | Clustering |
Xiao and Zuo [77] | 2012 | Multi-DEPSO | Dynamic Optimization |
Junfei et al. [78] | 2013 | DEPSO | Mobile Robot Localization |
Sahu et al. [79] | 2014 | DEPSO | PID Controller |
Seyedmahmoudian et al. [80] | 2015 | DEPSO | Photovoltaic Power Generation |
Gomes and Saraiva [81] | 2016 | DEPSO | Transmission Expansion Planning |
Boonserm and Sitjongsataporn [82] | 2017 | DEPSO-Scout | Numerical Optimization |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Zhao et al. [84] | 2005 | HPSO | Partner Selection for Virtual Enterprise |
Yang et al. [85] | 2006 | PSOSA | Global Optimization |
Gao et al. [86] | 2006 | HPSO | Optimizing Radial Basis Function |
Chu et al. [88] | 2006 | ASA-PPSO | Global Optimization |
Sadati et al. [89] | 2007 | PSO-B-SA | Under-Voltage Load Shedding Problem |
Ge et al. [91] | 2007 | Hybrid PSO with SA operator | Job-Shop Scheduling |
Song et al. [93] | 2008 | Hybrid PSO with SA operator | Job-Shop Scheduling |
Dong et al. [94] | 2010 | PSO-SA | Bayesian Networks |
Shieh et al. [95] | 2011 | SA-PSO | Global Optimization |
Zhang et al. [92] | 2011 | Hybrid PSO with SA operator | Job-Shop Scheduling |
Idoumghar et al. [96] | 2011 | HPSO-SA | Embedded Systems |
Tajbaksh et al. [97] | 2012 | PSO-SA | Traveling Tournament Problem |
Niknam et al. [98] | 2013 | SA-PSO | Dynamic Optical Power Flow |
Ma et al. [90] | 2014 | Hybrid PSO with SA operator | Job-Shop Scheduling |
Sudibyo et al. [99] | 2015 | SA-PSO | Nonlinear Model Predictive Control |
Wang and Sun [100] | 2016 | SA-PSO | K-Means Clustering |
Javidrad and Nazari [101] | 2017 | PSO-SA | Global Optimization |
Li et al. [103] | 2017 | SA-PSO | Parallel Plug-In Hybrid Electric Vehicle |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Shelokar et al. [105] | 2007 | PSACO | Improved continuous optimization |
Kaveh and Talatahari [106] | 2009 | DHPSACO | Truss structures with discrete variables |
Kaveh and Talatahari [107] | 2009 | HPSACO | Truss structures |
Niknam and Amiri [108] | 2010 | FAPSO-ACO-K | Cluster analysis |
Chen et al. [109] | 2011 | ACO and PSO | Traveling salesman problem |
Xiong and Wang [110] | 2011 | TAPC | Hybrid Clustering |
Kıran et al. [111] | 2012 | HAP | Energy demand of Turkey |
Huang et al. [112] | 2013 | ACOR | Data clustering |
Mahi et al. [113] | 2015 | PSO, ACO and 3-opt algorithm | Traveling salesman problem |
Kefi et al. [114] | 2015 | ASPSO | Traveling salesman problem |
Lazzus et al. [115] | 2016 | PSO+ACO | Interaction parameters on phase equilibria |
Mandloi and Bhatia [116] | 2016 | PSO, ACO | Large-MIMO detection |
Indadul et al. [117] | 2017 | PSO, ACO and K-Opt Algorithm | Traveling salesman problem |
Liu et al. [118] | 2017 | PSO, ACO | Container Truck Route optimization |
Junliang et al. [119] | 2017 | HOA | Traveling salesman problem |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Ghodrati and Lotfi [121] | 2012 | Hybrid CS/PSO | Global optimization |
Nawi et al. [122] | 2014 | HACPSO | Classification |
Enireddy and Kumar [123] | 2015 | Hybrid PSO CS | Compressed image classification |
Ye et al. [124] | 2015 | Hybrid CSA with PSO | Optimization of Parameters of SVM |
Li and Yin [125] | 2015 | PSCS | Global optimization |
Chen et al. [126] | 2015 | PSOCS | Artificial Neural Networks |
Guo et al. [127] | 2016 | PSOCS | Preventive maintenance period optimization model |
Chi et al. [128] | 2017 | CSPSO | Optimization problems |
Dash et al. [129] | 2017 | ICSPSO | Linear phase multiband stop filters |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Shi, et al. [130] | 2010 | IABAP | Global Optimization |
El-Abd [131] | 2011 | ABC-SPSO | Continuous Function Optimization |
Kıran and Gündüz [132] | 2013 | HPA | Continuous Optimization Problems |
Xiang, et al. [133] | 2014 | PS-MEABC | Real Parameter Optimization |
Vitorino, et al. [134] | 2015 | ABeePSO | Optimization Problems |
Lin and Hsieh [135] | 2015 | EPSO_ABC | Classification of Medical Datasets Using SVMs |
Zhou and Yang [136] | 2015 | PSO-DE-PABC and PSO-DE-GABC | Optimization Problems |
Li, et al. [137] | 2015 | PS-ABC | High-dimensional Optimization Problems |
Sedighizadeh and Mazaheripour [138] | 2017 | PSO-ABC | Multi-objective Vehicle Routing Problem |
Author/s: | Year | Algorithm | Area of Application |
---|---|---|---|
Shi et al. [152] | 2012 | HEPGO | Global Optimization |
El-Shirbiny and Alhamali [147] | 2013 | HPSIL | Fixed Charge Transportation Problems |
Liu and Zhou [153] | 2013 | New (GSO-PSO) | Constrained Optimization |
Zhao et al [146] | 2014 | HCPSO-IA | Complex layout design problems |
Arunachalam et al. [151] | 2014 | HPSOFF | Combined Economic and Emission Dispatch Problem |
Pan et al. [148] | 2015 | Hybrid PSO-BA | Global Optimization |
Manoj et al. [149] | 2016 | PSO-BA | Medical Image Registration |
Xia et al. [150] | 2017 | FAPSO | Global Optimization |
Function | Name | Expression | Range | Min |
---|---|---|---|---|
f1 | Sphere | [−100, 100] | f(x*) = 0 | |
f2 | Schwefel’s Problem 2.22 | [−10, 10] | f(x*) = 0 | |
f3 | Schwefel’s Problem 1.2 | [−100, 100] | f(x*) = 0 | |
f4 | Generalized Rosenbrock’s Function | [−n, n] | f(x*) = 0 | |
f5 | Generalized Schwefel’s Problem 2.26 | [−500, 500] | f(x*) = −12,569.5 | |
f6 | Generalized Rastrigrin’s Function | , A = 10 | [−5.12, 5.12] | f(x*) = 0 |
f7 | Ackley’s Function | [−32.768, 32.768] | f(x*) = 0 | |
f8 | Generalized Griewank Function | [−600, 600] | f(x*) = 0 |
f1 | f2 | f3 | f4 |
f5 | f6 | f7 | f8 |
Function | Performance | PSO [208] | PSO [209] | PSO [210] | PSOGSA [210] | DEPSO [150] |
---|---|---|---|---|---|---|
f1 | Mean | 1.36 × 10−4 | 1.8 × 10−3 | 2.83 × 10−4 | 6.66 × 10−19 | 1.60 × 10−26 |
St. Dev | 2.02 × 10−4 | NR | NR | NR | 6.56 × 10−26 | |
f2 | Mean | 4.21 × 10−2 | 2.0 × 10+0 | 5.50 × 10−3 | 3.79 × 10−19 | 2.89 × 10−13 |
St. Dev | 4.54 × 10−2 | NR | NR | NR | 1.54 × 10−12 | |
f3 | Mean | 7.01 × 10+1 | 4.1 × 10+3 | 5.19 × 10+3 | 4.09 × 10+2 | 3.71 × 10−1 |
St. Dev | 2.21 × 10+1 | NR | NR | NR | 2.39 × 10−1 | |
f4 | Mean | 9.67 × 10+1 | 3.6 × 10+4 | 2.01 × 10+2 | 5.62 × 10+1 | 4.20 × 10+1 |
St. Dev | 6.01 × 10+1 | NR | NR | NR | 3.28 × 10+1 | |
f5 | Mean | −4.84 × 10+3 | −9.8 × 10+3 | −5.92 × 10+3 | −1.22 × 10+4 | 4.68 × 10+3 |
St. Dev | 1.15 × 10+3 | NR | NR | NR | 9.42 × 10+2 | |
f6 | Mean | 4.67 × 10+1 | 5.51 × 10+1 | 7.23 × 10+1 | 2.27 × 10+1 | 4.07 × 10+1 |
St. Dev | 1.16 × 10+1 | NR | NR | NR | 1.19 × 10+1 | |
f7 | Mean | 2.76 × 10−1 | 9.0 × 10−3 | 4.85 × 10−10 | 6.68 × 10−12 | 2.98 × 10−13 |
St. Dev | 5.09 × 10−1 | NR | NR | NR | 1.51 × 10−12 | |
f8 | Mean | 9.21 × 10−3 | 1.0 × 10−2 | 5.43 × 10−3 | 1.48 × 10−3 | 1.69 × 10−2 |
St. Dev | 7.72 × 10−3 | NR | NR | NR | 1.82 × 10−2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, S.; Basak, S.; Peters, R.A., II. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Mach. Learn. Knowl. Extr. 2019, 1, 157-191. https://doi.org/10.3390/make1010010
Sengupta S, Basak S, Peters RA II. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Machine Learning and Knowledge Extraction. 2019; 1(1):157-191. https://doi.org/10.3390/make1010010
Chicago/Turabian StyleSengupta, Saptarshi, Sanchita Basak, and Richard Alan Peters, II. 2019. "Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives" Machine Learning and Knowledge Extraction 1, no. 1: 157-191. https://doi.org/10.3390/make1010010
APA StyleSengupta, S., Basak, S., & Peters, R. A., II. (2019). Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Machine Learning and Knowledge Extraction, 1(1), 157-191. https://doi.org/10.3390/make1010010