Silver Mask-Mediated Synthesis and Plasmonic Nanoparticle Decoration of ZnO Nanosheaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication Methodology
2.3. Characterization
2.4. Computer Simulations
2.5. SERS-Measurements
3. Results and Discussion
3.1. Morphology and Chemical Composition of the Samples
3.2. Three-Dimensional Geometry and Electric Field Strength Simulations of the Ag/ZnO Nanosheaf
3.3. SERS-Activity and Photocatalytic Property of the Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fleischmann, M.; Hendra, P.; McQuillan, A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J.; Paul, R.L.; Reid, E.S. Raman spectroscopy at electrode-electrolyte interfaces. J. Raman Spectrosc. 1976, 4, 269–274. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Sharma, B.; Frontiera, R.R.; Henry, A.I.; Ringe, E.; Van Duyne, R.P. SERS: Materials, applications, and the future. Mater. Today 2012, 15, 16–25. [Google Scholar] [CrossRef]
- Panarin, A.Y.; Terekhov, S.; Kholostov, K.; Bondarenko, V. SERS-active substrates based on n-type porous silicon. Appl. Surf. Sci. 2010, 256, 6969–6976. [Google Scholar] [CrossRef]
- Khinevich, N.; Girel, K.; Bandarenka, H.; Salo, V.; Mosunov, A. Surface enhanced Raman spectroscopy of fullerene C60 drop-deposited on the silvered porous silicon. J. Phys. Conf. Ser. 2017, 917, 062052. [Google Scholar] [CrossRef]
- Perevedentseva, E.; Karmenyan, A.; Chung, P.H.; He, Y.T.; Cheng, C.L. Surface enhanced Raman spectroscopy of carbon nanostructures. Surf. Sci. 2006, 600, 3723–3728. [Google Scholar] [CrossRef]
- Dubkov, S.; Novikov, D.; Bandarenka, H.; Burko, A.; Trifonov, A.; Volkova, L.; Edelbekova, P.; Lebedev, E.; Skryleva, E.; Gromov, D. Express formation and characterization of SERS-active substrate from a non-degradable Ag-Nb-N-O film. Appl. Surf. Sci. 2024, 645, 158682. [Google Scholar] [CrossRef]
- Phuong, N.T.T.; Nguyen, T.A.; Huong, V.T.; Tho, L.H.; Anh, D.T.; Ta, H.K.T.; Huy, T.H.; Trinh, K.T.L.; Tran, N.H.T. Sensors for Detection of the Synthetic Dye Rhodamine in Environmental Monitoring Based on SERS. Micromachines 2022, 13, 1840. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.S.; Carmichael, E.; McCall, D. Fabrication of SERS substrate for the detection of rhodamine 6G, glyphosate, melamine and salicylic acid. Vib. Spectrosc. 2016, 83, 159–169. [Google Scholar] [CrossRef]
- Klyachkovskaya, E.; Strekal, N.; Motevich, I.; Vaschenko, S.; Harbachova, A.; Belkov, M.; Gaponenko, S.; Dais, C.; Sigg, H.; Stoica, T.; et al. Enhanced Raman Scattering of Ultramarine on Au-coated Ge/Si-nanostructures. Plasmonics 2011, 6, 413–418. [Google Scholar] [CrossRef]
- Temur, E.; Boyacı, İ.H.; Tamer, U.; Unsal, H.; Aydogan, N. A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration. Anal. Bioanal. Chem. 2010, 397, 1595–1604. [Google Scholar] [CrossRef]
- Yarantseva, N.D.; Belyatsky, V.N.; Shleiko, E.V.; Osotskaya, E.S.; Burko, A.A.; Dolgiy, A.L.; Girel, K.V.; Bandarenka, H.V. Detection of ibuprofen and aspirin on silver nets by surface enhanced Raman scattering (SERS) spectroscopy. J. Phys. Conf. Ser. 2021, 1866, 012007. [Google Scholar] [CrossRef]
- Trachta, G.; Schwarze, B.; Sägmüller, B.; Brehm, G.; Schneider, S. Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine. J. Mol. Struct. 2004, 693, 175–185. [Google Scholar] [CrossRef]
- Gambucci, M.; Cambiotti, E.; Sassi, P.; Latterini, L. Multilayer Gold-Silver Bimetallic Nanostructures to Enhance SERS Detection of Drugs. Molecules 2020, 25, 3405. [Google Scholar] [CrossRef] [PubMed]
- Khrustalev, V.V.; Khrustaleva, T.A.; Kahanouskaya, E.Y.; Rudnichenko, Y.A.; Bandarenka, H.V.; Arutyunyan, A.M.; Girel, K.V.; Khinevich, N.V.; Ksenofontov, A.L.; Kordyukova, L.V. The alpha helix 1 from the first conserved region of HIV1 gp120 is reconstructed in the short NQ21 peptide. Arch. Biochem. Biophys. 2018, 638, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Pavel, I.; McCarney, E.; Elkhaled, A.; Morrill, A.; Plaxco, K.; Moskovits, M. Label-Free SERS Detection of Small Proteins Modified to Act as Bifunctional Linkers. J. Phys. Chem. C 2008, 112, 4880–4883. [Google Scholar] [CrossRef]
- Feliu, N.; Hassan, M.; Garcia Rico, E.; Cui, D.; Parak, W.; Alvarez-Puebla, R. SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir 2017, 33, 9711–9730. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Iglesias, L.; Stanfoca Casagrande, G.M.; García-Lojo, D.; Ferro Leal, L.; Ngo, T.A.; Pérez-Juste, J.; Reis, R.M.; Kant, K.; Pastoriza-Santos, I. SERS sensing for cancer biomarker: Approaches and directions. Bioact. Mater. 2024, 34, 248–268. [Google Scholar] [CrossRef]
- Gong, T.; Das, C.M.; Yin, M.J.; Lv, T.R.; Singh, N.M.; Soehartono, A.M.; Singh, G.; An, Q.F.; Yong, K.T. Development of SERS tags for human diseases screening and detection. Coord. Chem. Rev. 2022, 470, 214711. [Google Scholar] [CrossRef]
- Colniță, A.; Toma, V.A.; Brezeștean, I.A.; Tahir, M.A.; Dina, N.E. A Review on Integrated ZnO-Based SERS Biosensors and Their Potential in Detecting Biomarkers of Neurodegenerative Diseases. Biosensors 2023, 13, 499. [Google Scholar] [CrossRef]
- Kerker, M. Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids. Accounts Chem. Res. 1984, 17, 271–277. [Google Scholar] [CrossRef]
- Schlücker, S. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications; Wiley-VCH GmbH: Weinheim, Germany, 2010. [Google Scholar] [CrossRef]
- Mosier-Boss, P. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef]
- King, M.D.; Khadka, S.; Craig, G.A.; Mason, M.D. Effect of Local Heating on the SERS Efficiency of Optically Trapped Prismatic Nanoparticles. J. Phys. Chem. C 2008, 112, 11751–11757. [Google Scholar] [CrossRef]
- Shin, G.; Lim, D.; Shin, D. Plasmonic heating effect in SERS-based nanoplastic detection. Sensors Actuators B Chem. 2023, 393, 134196. [Google Scholar] [CrossRef]
- Milekhin, A.; Sveshnikova, L.; Duda, T.; Yeryukov, N.; Rodyakina, E.; Gutakovskii, A.; Batsanov, S.; Latyshev, A.; Zahn, D. Surface-enhanced Raman spectroscopy of semiconductor nanostructures. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 75, 210–222. [Google Scholar] [CrossRef]
- Song, G.; Cong, S.; Zhao, Z. Defect engineering in semiconductor-based SERS. Chem. Sci. 2022, 13, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Xie, S.; Lai, K.; Gu, C.; Jiang, T.; Zhou, L.; Zheng, X.; Shen, X.; Han, J.; Zhou, J. Fine fabrication of TiO2/MoOx nano-heterojunctions and investigating on the improved charge transfer for SERS application. Mater. Today Nano 2022, 18, 100179. [Google Scholar] [CrossRef]
- Dong, J.; Huang, J.; Wang, A.; Biesold-McGee, G.V.; Zhang, X.; Gao, S.; Wang, S.; Lai, Y.; Lin, Z. Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy 2020, 71, 104579. [Google Scholar] [CrossRef]
- Xie, Y.; Jin, Y.; Zhou, Y.; Wang, Y. SERS activity of self-cleaning silver/titania nanoarray. Appl. Surf. Sci. 2014, 313, 549–557. [Google Scholar] [CrossRef]
- Barbillon, G. Fabrication and SERS Performances of Metal/Si and Metal/ZnO Nanosensors: A Review. Coatings 2019, 9, 86. [Google Scholar] [CrossRef]
- Ha Pham, T.T.; Vu, X.H.; Dien, N.D.; Trang, T.T.; Kim Chi, T.T.; Phuong, P.H.; Nghia, N.T. Ag nanoparticles on ZnO nanoplates as a hybrid SERS-active substrate for trace detection of methylene blue. RSC Adv. 2022, 12, 7850–7863. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yu, J.; Akakuru, O.U.; Wang, X.; Yuan, B.; Chen, T.; Guo, L.; Wu, A. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets. Chem. Sci. 2020, 11, 9414–9420. [Google Scholar] [CrossRef] [PubMed]
- Gromov, D.G.; Pavlova, L.M.; Savitskii, A.I.; Trifonov, A.Y. Investigation of the early stages of condensation of Ag and Au on the amorphous carbon surface during thermal evaporation under vacuum. Phys. Solid State 2015, 57, 173–180. [Google Scholar] [CrossRef]
- Gromov, D.G.; Pavlova, L.M.; Savitsky, A.I.; Trifonov, A.Y. Nucleation and growth of Ag nanoparticles on amorphous carbon surface from vapor phase formed by vacuum evaporation. Appl. Phys. A 2015, 118, 1297–1303. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, H.T.; Yoo, K.O. Effect of Ferric Oxide on the High-Temperature Removal of Hydrogen Sulfide over ZnO-Fe2O3 Mixed Metal Oxide Sorbent. Ind. Eng. Chem. Res. 1995, 34, 1181–1188. [Google Scholar] [CrossRef]
- Nefedov, V.; Salyn, Y.; Leonhardt, G.; Scheibe, R. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1977, 10, 121–124. [Google Scholar] [CrossRef]
- Wagner, C.D.; Zatko, D.A.; Raymond, R.H. Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal. Chem. 1980, 52, 1445–1451. [Google Scholar] [CrossRef]
- Patterson, A.L. The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
- Miranda, M.A.R.; Sasaki, J.M. The limit of application of the Scherrer equation. Acta Cryst. 2018, 74, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Gorham, J. NIST X-Ray Photoelectron Spectroscopy Database—SRD 20; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. [Google Scholar] [CrossRef]
- Farooq, S.; De Araujo, R.E. Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing. Open J. Appl. Sci. 2018, 08, 126–139. [Google Scholar] [CrossRef]
- Ye, J.; Arul, R.; Nieuwoudt, M.K.; Dong, J.; Zhang, T.; Dai, L.; Greenham, N.C.; Rao, A.; Hoye, R.L.Z.; Gao, W.; et al. Understanding the Chemical Mechanism behind Photoinduced Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2023, 14, 4607–4616. [Google Scholar] [CrossRef]
- Zhou, Z.; Kato, K.; Komaki, T.; Yoshino, M.; Yukawa, H.; Morinaga, M.; Morita, K. Effects of dopants and hydrogen on the electrical conductivity of ZnO. J. Eur. Ceram. Soc. 2004, 24, 139–146. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubkov, S.; Gromov, D.; Dronova, D.; Malahov, N.; Novikov, D.; Tarasov, A.; Gavrilov, S.; Skryleva, E.; Murashka, V.; Koshkarova, V.; et al. Silver Mask-Mediated Synthesis and Plasmonic Nanoparticle Decoration of ZnO Nanosheaves. J. Compos. Sci. 2025, 9, 686. https://doi.org/10.3390/jcs9120686
Dubkov S, Gromov D, Dronova D, Malahov N, Novikov D, Tarasov A, Gavrilov S, Skryleva E, Murashka V, Koshkarova V, et al. Silver Mask-Mediated Synthesis and Plasmonic Nanoparticle Decoration of ZnO Nanosheaves. Journal of Composites Science. 2025; 9(12):686. https://doi.org/10.3390/jcs9120686
Chicago/Turabian StyleDubkov, Sergey, Dmitry Gromov, Daria Dronova, Nikita Malahov, Denis Novikov, Andrey Tarasov, Sergey Gavrilov, Elena Skryleva, Valeryia Murashka, Veronika Koshkarova, and et al. 2025. "Silver Mask-Mediated Synthesis and Plasmonic Nanoparticle Decoration of ZnO Nanosheaves" Journal of Composites Science 9, no. 12: 686. https://doi.org/10.3390/jcs9120686
APA StyleDubkov, S., Gromov, D., Dronova, D., Malahov, N., Novikov, D., Tarasov, A., Gavrilov, S., Skryleva, E., Murashka, V., Koshkarova, V., & Bandarenka, H. V. (2025). Silver Mask-Mediated Synthesis and Plasmonic Nanoparticle Decoration of ZnO Nanosheaves. Journal of Composites Science, 9(12), 686. https://doi.org/10.3390/jcs9120686

