Parametric Study on the Effects of Inclination Angle and Overlap Configuration on the Three-Point Bending Response of Tiled Laminates: A Numerical Simulation Approach
Abstract
1. Introduction
2. Three-Dimensional Progressive Damage Model (3D PDM)
- (1)
- Fibre tension mode ()
- (2)
- Fibre compression mode ()
- (3)
- Matrix tension mode ()
- (4)
- Matrix compression mode ()
- (1)
- Fibre tension mode ()
- (2)
- Fibre compression mode ()
- (3)
- Matrix tension mode ()
- (4)
- Matrix compression mode ()
3. Numerical Modelling
3.1. Parameter Design
3.1.1. Overlap Configuration
3.1.2. Inclination Degree
3.2. Material Properties
3.3. Interlaminar Properties
4. Results and Discussion
4.1. Bending Behaviour of TL in Elastic Stage
4.1.1. Elastic Bending Stiffness
4.1.2. Moment of Inertia Variations Across Different TL Geometric Configurations
4.1.3. Stress Distribution in the Elastic Stage
4.2. Bending Behaviour of TL in the Non-Linear Stage
4.2.1. Ultimate Midspan Bending Moment
4.2.2. Failure Modes
5. Conclusions
- Elastic-stage performance and stiffness mechanisms
- Non-linear behaviour and failure mechanisms
- Design implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

References
- Jarrett, W.; Jeffs, S.P.; Korkees, F.; Rawson, M. The Opportunities and Challenges of Hybrid Composite Driveshafts and Their Couplings in the Aerospace Industry: A Review. Compos. Struct. 2023, 320, 117203. [Google Scholar] [CrossRef]
- Monaldo, E.; Nerilli, F.; Vairo, G. Basalt-Based Fiber-Reinforced Materials and Structural Applications in Civil Engineering. Compos. Struct. 2019, 214, 246–263. [Google Scholar] [CrossRef]
- Sreejith, M.; Rajeev, R.S. Fiber Reinforced Composites for Aerospace and Sports Applications. In Fiber Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 821–859. ISBN 978-0-12-821090-1. [Google Scholar]
- Al-Furjan, M.S.H.; Shan, L.; Shen, X.; Zarei, M.S.; Hajmohammad, M.H.; Kolahchi, R. A Review on Fabrication Techniques and Tensile Properties of Glass, Carbon, and Kevlar Fiber Reinforced Rolymer Composites. J. Mater. Res. Technol. 2022, 19, 2930–2959. [Google Scholar] [CrossRef]
- Topol, H.; Al-Chlaihawi, M.J.; Demirkoparan, H.; Merodio, J. Bifurcation of Fiber-Reinforced Cylindrical Membranes under Extension, Inflation, and Swelling. J. Appl. Comput. Mech. 2023, 9, 113–128. [Google Scholar] [CrossRef]
- Mara, V.; Haghani, R.; Harryson, P. Bridge Decks of Fibre Reinforced Polymer (FRP): A Sustainable Solution. Constr. Build. Mater. 2014, 50, 190–199. [Google Scholar] [CrossRef]
- Sonnenschein, R.; Gajdosova, K.; Holly, I. FRP Composites and Their Using in the Construction of Bridges. Procedia Eng. 2016, 161, 477–482. [Google Scholar] [CrossRef]
- Zhou, X.-Y.; Wang, N.-W.; Xiong, W.; Wu, W.-Q.; Cai, C.S. Multi-Scale Reliability Analysis of FRP Truss Bridges with Hybrid Random and Interval Uncertainties. Compos. Struct. 2022, 297, 115928. [Google Scholar] [CrossRef]
- FiberCore Europe. InfraCore Technology. Available online: https://www.fibercore-europe.com/en/composite-as-a-structural-material/infracore-technology/ (accessed on 29 September 2025).
- Hiddingh, J.; Grefhorst, R.; Veltkamp, M. Full-Scale Fatigue Testing with Initial Damage as Validation of FRP Road Bridge Design; IABSE: Stockholm, Sweden, 2016; pp. 1280–1287. [Google Scholar]
- Vaerwyckweg, V. Structural Behaviour and Robustness Assessment of an Infracore® Inside Bridge Deck Specimen Subjected to Static and Dynamic Local Loading. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Smits, J. Fiber-Reinforced Polymer Bridge Design in the Netherlands: Architectural Challenges toward Innovative, Sustainable, and Durable Bridges. Engineering 2016, 2, 518–527. [Google Scholar] [CrossRef]
- Uyttersprot, J.; De Corte, W.; Van Paepegem, W. Mechanical Characterization of GFRP Tiled Laminates for Structural Engineering Applications: Stiffness, Strength and Failure Mechanisms. J. Compos. Sci. 2024, 8, 265. [Google Scholar] [CrossRef]
- Uyttersprot, J.; De Corte, W.; Van Paepegem, W. High-Cycle Fatigue Behaviour and Structural Robustness of Glass Fibre-Reinforced Polymer Tiled Web-Core Sandwich Panel Unit Cells in Load-Bearing Structures. J. Compos. Sci. 2024, 8, 538. [Google Scholar] [CrossRef]
- Saeed, K.; McIlhagger, A.; Harkin-Jones, E.; Kelly, J.; Archer, E. Predication of the In-Plane Mechanical Properties of Continuous Carbon Fibre Reinforced 3D Printed Polymer Composites Using Classical Laminated-Plate Theory. Compos. Struct. 2021, 259, 113226. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Liu, Q.; Xu, J.; Zhang, W.; Yang, Q. An Elastoplastic Damage Ice Material Model Based on Modified Tsai-Wu Yield Criterion: Experiment, Theory and Numerical Application. Constr. Build. Mater. 2024, 438, 137149. [Google Scholar] [CrossRef]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. Compos. Sci. Technol. 2002, 62, 1633–1662. [Google Scholar] [CrossRef]
- Azhdari, S.; Taheri-Behrooz, F. An Experimental and Numerical Investigation on Bending after Impact Strength of Glass Laminate Aluminium Reinforced Epoxy. Compos. Part A Appl. Sci. Manuf. 2023, 171, 107578. [Google Scholar] [CrossRef]
- Zhu, P.; Li, G.; Jia, Q.; Zhang, Y.; Wang, Y.; Zhou, L. An Efficient Multi-Scale Method for Failure Mechanism Analysis of SiCf/Ti Composites with Experimental Validation. Mater. Charact. 2024, 216, 114233. [Google Scholar] [CrossRef]
- Ait Mohammed, M.; Tarfaoui, M. A Progressive Damage Modelling of Glass/Epoxy Cylindrical Structure Subjected to Low-Velocity Impact. Eng. Fail. Anal. 2022, 134, 106036. [Google Scholar] [CrossRef]
- Fakoor, M.; Mohammad Navid Ghoreishi, S. Experimental and Numerical Investigation of Progressive Damage in Composite Laminates Based on Continuum Damage Mechanics. Polym. Test. 2018, 70, 533–543. [Google Scholar] [CrossRef]
- Li, X.; Ma, D.; Liu, H.; Tan, W.; Gong, X.; Zhang, C.; Li, Y. Assessment of Failure Criteria and Damage Evolution Methods for Composite Laminates under Low-Velocity Impact. Compos. Struct. 2019, 207, 727–739. [Google Scholar] [CrossRef]
- Liao, B.B.; Liu, P.F. Finite Element Analysis of Dynamic Progressive Failure of Plastic Composite Laminates under Low Velocity Impact. Compos. Struct. 2017, 159, 567–578. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Sapanathan, T.; Meng, L.; Xu, Y. Multiscale Modeling of the Mechanical Behavior of 3D Braided CFRP Composites under Uniaxial Tension. Compos. Struct. 2023, 306, 116601. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, J.; Wang, J.; Zhang, W.; Guan, Z. A Comparative Study on Failure Mechanisms of Open-Hole and Filled-Hole Composite Laminates: Experiment and Numerical Simulation. Thin-Walled Struct. 2024, 198, 111730. [Google Scholar] [CrossRef]
- Zhang, Y.; Van Paepegem, W.; De Corte, W. An Enhanced Progressive Damage Model for Laminated Fiber-Reinforced Composites Using the 3D Hashin Failure Criterion: A Multi-Level Analysis and Validation. Materials 2024, 17, 5176. [Google Scholar] [CrossRef]
- Kuhn, C.; Müller, R. A Continuum Phase Field Model for Fracture. Eng. Fract. Mech. 2010, 77, 3625–3634. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Lonetti, P.; Pranno, A. A Combined ALE-Cohesive Fracture Approach for the Arbitrary Crack Growth Analysis. Eng. Fract. Mech. 2024, 301, 109996. [Google Scholar] [CrossRef]
- Benzeggagh, M.L.; Kenane, M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Compos. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]

























| Nominal Inclination (°) | Actual Inclination (°) | Cross-Section Thickness t (mm) | Width (w) (mm) | (mm) | l/t | Total Length (L) (mm) |
|---|---|---|---|---|---|---|
| 0 | 0 | 3 | 25.0 | 112.0 | 37.33 | 150.0 |
| 1 | 1.02 | 3 | 25.0 | 112.0 | 37.33 | 168.0 |
| 2 | 1.97 | 3 | 25.0 | 116.0 | 38.67 | 145.0 |
| 3 | 3.01 | 3 | 25.0 | 114.0 | 38.00 | 133.0 |
| 4 | 4.08 | 3 | 25.0 | 112.0 | 37.33 | 154.0 |
| 5 | 5.19 | 3 | 25.0 | 110.0 | 36.67 | 143.0 |
| Elastic properties | (MPa) | (MPa) | (MPa) | (MPa) | ||
| 25,940 | 10,630 | 3743 | 3743 | 0.32 | 0.42 | |
| Hashin damage | (MPa) | (MPa) | (MPa) | (MPa) | (MPa) | |
| 585 | 300 | 18.86 | 60 | 38 | ||
| Damage evolution | (N/mm) | (N/mm) | (N/mm) | (N/mm) | ||
| 6.8 | 4.7 | 0.3 | 1.6 | |||
| (MPa) | (MPa) | (N/mm) | (N/mm) | |
|---|---|---|---|---|
| 47.29 | 34.68 | 0.25 | 0.966 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; De Corte, W.; Van Paepegem, W. Parametric Study on the Effects of Inclination Angle and Overlap Configuration on the Three-Point Bending Response of Tiled Laminates: A Numerical Simulation Approach. J. Compos. Sci. 2025, 9, 650. https://doi.org/10.3390/jcs9120650
Zhang Y, De Corte W, Van Paepegem W. Parametric Study on the Effects of Inclination Angle and Overlap Configuration on the Three-Point Bending Response of Tiled Laminates: A Numerical Simulation Approach. Journal of Composites Science. 2025; 9(12):650. https://doi.org/10.3390/jcs9120650
Chicago/Turabian StyleZhang, Yichen, Wouter De Corte, and Wim Van Paepegem. 2025. "Parametric Study on the Effects of Inclination Angle and Overlap Configuration on the Three-Point Bending Response of Tiled Laminates: A Numerical Simulation Approach" Journal of Composites Science 9, no. 12: 650. https://doi.org/10.3390/jcs9120650
APA StyleZhang, Y., De Corte, W., & Van Paepegem, W. (2025). Parametric Study on the Effects of Inclination Angle and Overlap Configuration on the Three-Point Bending Response of Tiled Laminates: A Numerical Simulation Approach. Journal of Composites Science, 9(12), 650. https://doi.org/10.3390/jcs9120650

