Mechanical and Structural Properties of Biocomposites Reinforced with Bagasse Fibers from Sugarcane Overexpressing Sucrose Synthesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemical Analysis
2.3. Carbonization Treatment
2.4. Alkalization Treatment
2.5. Fabrication of Biocomposites
2.6. Morphological Analysis and Mechanical Properties
3. Results
3.1. Chemical Composition of Sugarcane Bagasse Fibers
3.2. Mechanical Properties of Biocomposites
3.3. Morphological Analysis of the Biocomposite
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bismarck, A.; Mishra, S.; Lampke, T. Plant Fibers as Reinforcement for Green Composites. In Natural Fibers, Biopolymers, and Biocomposites; Mohanty, A., Misra, M., Drzal, L., Eds.; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-8493-1741-5. [Google Scholar]
- Akter, M.; Uddin, H.; Anik, H.R. Plant Fiber-Reinforced Polymer Composites: A Review on Modification, Fabrication, Properties, and Applications. Polym. Bull. 2024, 81, 1–85. [Google Scholar] [CrossRef]
- Ramlee, N.A.; Jawaid, M.; Zainudin, E.S.; Yamani, S.A.K. Tensile, Physical and Morphological Properties of Oil Palm Empty Fruit Bunch/Sugarcane Bagasse Fibre Reinforced Phenolic Hybrid Composites. J. Mater. Res. Technol. 2019, 8, 3466–3474. [Google Scholar] [CrossRef]
- Getu, D.; Nallamothu, R.B.; Minaye, G.; Fentaw, G.; Yigrem, M.; Kassa, E. Experimental Investigation on Mechanical and Physical Properties of Bamboo and Sisal Fiber Reinforced Hybrid Polyester Composite. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1057, 012007. [Google Scholar] [CrossRef]
- Harussani, M.M.; Sapuan, S.M.; Nadeem, G.; Rafin, T.; Kirubaanand, W. Recent Applications of Carbon-Based Composites in Defence Industry: A Review. Def. Technol. 2022, 18, 1281–1300. [Google Scholar] [CrossRef]
- He, H.; Zhang, R.; Zhang, P.; Wang, P.; Chen, N.; Qian, B.; Zhang, L.; Yu, J.; Dai, B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. Adv. Sci. 2023, 10, 2205557. [Google Scholar] [CrossRef]
- Mahmud, M.A.; Anannya, F.R. Sugarcane Bagasse—A Source of Cellulosic Fiber for Diverse Applications. Heliyon 2021, 7, e07771. [Google Scholar] [CrossRef] [PubMed]
- Anur, R.M.; Mufithah, N.; Sawitri, W.D.; Sakakibara, H.; Sugiharto, B. Overexpression of Sucrose Phosphate Synthase Enhanced Sucrose Content and Biomass Production in Transgenic Sugarcane. Plants 2020, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Suherman; Wijayanto, S.I.; Anur, R.M.; Neliana, I.R.; Dewanti, P.; Sugiharto, B. Field Evaluation on Growth and Productivity of the Transgenic Sugarcane Lines Overexpressing Sucrose-Phosphate Synthase. Sugar Tech 2022, 24, 1689–1698. [Google Scholar] [CrossRef]
- Mulyatama, R.A.; Neliana, I.R.; Sawitri, W.D.; Sakakibara, H.; Kim, K.-M.; Sugiharto, B. Increasing the Activity of Sugarcane Sucrose Phosphate Synthase Enhanced Growth and Grain Yields in Transgenic Indica Rice. Agronomy 2022, 12, 2949. [Google Scholar] [CrossRef]
- Shidiqi, M.H.A.; Hariyanto, F.; Sugiharto, B.; Ermawati, N.; Handoyo, T. Phenotypic Characterization and Evaluation of Transgenic Indica Rice Overexpressing SoSPS1 Gene in Greenhouse Trials. J. Crop Sci. Biotechnol. 2025, 28, 49–56. [Google Scholar] [CrossRef]
- Afidah, S.N.; Agustien, I.D.; Dewanti, P.; Sugiharto, B. Increased Activity of Sugarcane Sucrose-phosphate Synthase in Transgenic Tomato in Response to N-terminal Truncation. Indones. J. Biotechnol. 2022, 27, 43. [Google Scholar] [CrossRef]
- Haigler, C.H.; Singh, B.; Zhang, D.; Hwang, S.; Wu, C.; Cai, W.X.; Hozain, M.; Kang, W.; Kiedaisch, B.; Strauss, R.E.; et al. Transgenic Cotton Over-Producing Spinach Sucrose Phosphate Synthase Showed Enhanced Leaf Sucrose Synthesis and Improved Fiber Quality under Controlled Environmental Conditions. Plant Mol. Biol. 2007, 63, 815–832. [Google Scholar] [CrossRef]
- Wang, W.; Viljamaa, S.; Hodek, O.; Moritz, T.; Niittylä, T. Sucrose Synthase Activity Is Not Required for Cellulose Biosynthesis in Arabidopsis. Plant J. 2022, 110, 1493–1497. [Google Scholar] [CrossRef]
- Coleman, H.D.; Yan, J.; Mansfield, S.D. Sucrose Synthase Affects Carbon Partitioning to Increase Cellulose Production and Altered Cell Wall Ultrastructure. Proc. Natl. Acad. Sci. USA 2009, 106, 13118–13123. [Google Scholar] [CrossRef]
- Fujii, S.; Hayashi, T.; Mizuno, K. Sucrose Synthase is an Integral Component of the Cellulose Synthesis Machinery. Plant Cell Physiol. 2010, 51, 294–301. [Google Scholar] [CrossRef]
- Restuti, D.; Michaelowa, A. The Economic Potential of Bagasse Cogeneration as CDM Projects in Indonesia. Energy Policy 2007, 35, 3952–3966. [Google Scholar] [CrossRef]
- Kumar, R.; Gunjal, J.; Chauhan, S. Effect of Carbonization Temperature on Properties of Natural Fiber and Charcoal Filled Hybrid Polymer Composite. Compos. Part B Eng. 2021, 217, 108846. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A.; Saleme-Osornio, R.S.; Ramírez-Aguilar, R. Mechanical Properties of Hybrid Carbonized Plant Fibers Reinforced Bio-Based Epoxy Laminates. Polymers 2021, 13, 3435. [Google Scholar] [CrossRef] [PubMed]
- Feliz Florian, G.; Ragoubi, M.; Leblanc, N.; Taouk, B.; Abdelouahed, L. Biochar Production and Its Potential Application for Biocomposite Materials: A Comprehensive Review. J. Compos. Sci. 2024, 8, 220. [Google Scholar] [CrossRef]
- Li, S.; Xu, Y.; Jing, X.; Yilmaz, G.; Li, D.; Turng, L.-S. Effect of Carbonization Temperature on Mechanical Properties and Biocompatibility of Biochar/Ultra-High Molecular Weight Polyethylene Composites. Compos. Part B Eng. 2020, 196, 108120. [Google Scholar] [CrossRef]
- Jin-Myung, K.; In-Seong, S.; Donghwan, C.; Ik-Pyo, H. Effect of Carbonization Temperature and Chemical Pre-Treatment on the Thermal Change and Fiber Morphology of Kenaf-Based Carbon Fibers. Carbon Lett. 2011, 12, 131–137. [Google Scholar] [CrossRef]
- Verma, D.; Gope, P.C.; Maheshwari, M.K.; Sharma, R.K. Bagasse Fiber Composites-A Review. J. Mater. Environ. Sci. 2012, 3, 1079–1092. [Google Scholar]
- Zafeer, M.K.; Prabhu, R.; Rao, S.; Mahesha, G.; Bhat, K.S. Mechanical Characteristics of Sugarcane Bagasse Fibre Reinforced Polymer Composites: A Review. Cogent Eng. 2023, 10, 2200903. [Google Scholar] [CrossRef]
- Mukaffa, H.; Asrofi, M.; Sujito; Asnawi; Hermawan, Y.; Sumarji; Qoryah, R.D.H.; Sapuan, S.M.; Ilyas, R.A.; Atiqah, A. Effect of Alkali Treatment of Piper Betle Fiber on Tensile Properties as Biocomposite Based Polylactic Acid: Solvent Cast-Film Method. Mater. Today Proc. 2022, 48, 761–765. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Valenza, A. The Effect of Alkaline Treatment on Mechanical Properties of Kenaf Fibers and Their Epoxy Composites. Compos. Part B Eng. 2015, 68, 14–21. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, N.; Ara, A.; Habib, M.A.; Parvez, M.M.H. Mechanical Properties of Kenaf and Palmyra Palm Leaf Stalk Fiber Reinforced Composite. Results Surf. Interfaces 2024, 15, 100229. [Google Scholar] [CrossRef]
- Nadlene, R.; Sapuan, S.M.; Jawaid, M.; Ishak, M.R.; Yusriah, L. The Effects of Chemical Treatment on the Structural and Thermal, Physical, and Mechanical and Morphological Properties of Roselle Fiber-reinforced Vinyl Ester Composites. Polym. Compos. 2018, 39, 274–287. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Manimaran, P.; Verma, A.; Sanjay, M.R.; Siengchin, S.; Kandakodeeswaran, K.; Geetha, M. A Novel Palm Sheath and Sugarcane Bagasse Fiber Based Hybrid Composites for Automotive Applications: An Experimental Approach. Polym. Compos. 2021, 42, 512–521. [Google Scholar] [CrossRef]
- Zakaria, M.S.; Musa, L.; Nordin, R.M.; Halim, K.A.A. Sugarcane Bagasse Reinforced Polyester Composites: Effects of Fiber Surface Treatment and Fiber Loading on The Tensile and Flexural Properties. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012032. [Google Scholar] [CrossRef]
- Anggriani, U.M.; Novia, N.; Melwita, E.; Aprianti, T. Effect of Temperature and Time on Alkaline Pretreatment and Alkaline Microwave-Assisted Pretreatment on Banana Stem Composition. Chem. J. Tek. Kim. 2023, 10, 112. [Google Scholar] [CrossRef]
- Eyupoglu, S.; Eyupoglu, C.; Merdan, N. Characterization of a Novel Natural Plant-Based Fiber from Reddish Shell Bean as a Potential Reinforcement in Bio-Composites. Biomass Conv. Bioref. 2025, 15, 4259–4268. [Google Scholar] [CrossRef]
- Checol, C.N.; Sendekie, Z.B. Effect of Alkali Treatment on Physicochemical and Microstructural Properties of False Banana Fiber. Sci. Rep. 2025, 15, 25446. [Google Scholar] [CrossRef]
- Belouadah, Z.; Nasri, K.; Toubal, L. The Effects of Lignin on the Thermal and Morphological Properties and Damage Mechanisms after UV Irradiation of Polypropylene Biocomposites Reinforced with Flax and Pine Fibres: Acoustic Emission Analysis. Materials 2024, 17, 2474. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.D.P.; Ornaghi, H.L.; Monticeli, F.M.; Poletto, M.; Zattera, A.J. A Survey on the Effect of the Chemical Composition on the Thermal, Physical, Mechanical, and Dynamic Mechanical Thermal Analysis of Three Brazilian Wood Species. Polymers 2024, 16, 2651. [Google Scholar] [CrossRef]
- Widodo, E.; Mulyadi; Garside, A.K.; Wirawan, W.A.; Yaakob@Ariffin, N.H.M. Enhancing Adhesivity and Mechanical Performance of Sansevieria Fiber-Reinforced Composites through Alkali Treatment. S. Afr. J. Chem. Eng. 2025, 54, 167–178. [Google Scholar] [CrossRef]
- Gebrekrstos, A.; Orasugh, J.T.; Muzata, T.S.; Ray, S.S. Cellulose-Based Sustainable Composites: A Review of Systems for Applications in EMI Shielding and Sensors. Macro Mater. Eng. 2022, 307, 2200185. [Google Scholar] [CrossRef]
- Kim, C.-H.; Lee, S.-Y.; Rhee, K.Y.; Park, S.-J. Carbon-Based Composites in Biomedical Applications: A Comprehensive Review of Properties, Applications, and Future Directions. Adv. Compos. Hybrid Mater. 2024, 7, 55. [Google Scholar] [CrossRef]
- Agarwal, N.; Rangamani, A.; Bhavsar, K.; Virnodkar, S.S.; Fernandes, A.A.A.; Chadha, U.; Srivastava, D.; Patterson, A.E.; Rajasekharan, V. An Overview of Carbon-Carbon Composite Materials and Their Applications. Front. Mater. 2024, 11, 1374034. [Google Scholar] [CrossRef]
- Ahmed, M.; Iqbal, A.; Latif, A.; Din, S.U.; Sarwar, M.B.; Wang, X.; Rao, A.Q.; Husnain, T.; Ali Shahid, A. Overexpression of a Sucrose Synthase Gene Indirectly Improves Cotton Fiber Quality Through Sucrose Cleavage. Front. Plant Sci. 2020, 11, 476251. [Google Scholar] [CrossRef]
- Dangwal, M.; Suri, G.S. Recent Finding on Sucrose Synthase Research: Not the Only Key for Starch and Cellulose Synthesis. Physiol. Mol. Biol. Plants 2023, 29, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
Sample Types | Hemicellulose (%) | Cellulose (%) | Lignin (%) | |
---|---|---|---|---|
Untreated | NT | 5.89 ± 0.43 | 40.64 ± 0.25 | 16.92 ± 0.64 |
SPS1 | 4.84 ± 0.21 | 41.92 ± 1.97 | 12.84 ± 0.35 | |
SPS3 | 4.64 ± 0.50 | 44.20 ± 0.64 | 14.43 ± 0.31 | |
SPS9 | 5.55 ± 0.38 | 41.50 ± 0.73 | 14.20 ± 0.62 | |
Carbonization | NT | 1.15 ± 0.35 | 0.85 ± 0.35 | 84.21 ± 0.13 |
SPS1 | 1.05 ± 0.07 | 0.75 ± 0.07 | 84.35 ± 0.28 | |
SPS3 | 0.55 ± 0.49 | 0.40 ± 0.28 | 87.24 ± 0.07 | |
SPS9 | 1.49 ± 0.42 | 1.20 ± 0.42 | 83.33 ± 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakura, R.R.; Sugiharto, B.; Sawitri, W.D.; Asrofi, M.; Junus, S.; Dwilaksana, D.; Fauzi, W.S. Mechanical and Structural Properties of Biocomposites Reinforced with Bagasse Fibers from Sugarcane Overexpressing Sucrose Synthesis. J. Compos. Sci. 2025, 9, 503. https://doi.org/10.3390/jcs9090503
Sakura RR, Sugiharto B, Sawitri WD, Asrofi M, Junus S, Dwilaksana D, Fauzi WS. Mechanical and Structural Properties of Biocomposites Reinforced with Bagasse Fibers from Sugarcane Overexpressing Sucrose Synthesis. Journal of Composites Science. 2025; 9(9):503. https://doi.org/10.3390/jcs9090503
Chicago/Turabian StyleSakura, Rahma Rei, Bambang Sugiharto, Widhi Dyah Sawitri, Mochamad Asrofi, Salahuddin Junus, Dedi Dwilaksana, and Wahyu Syahrul Fauzi. 2025. "Mechanical and Structural Properties of Biocomposites Reinforced with Bagasse Fibers from Sugarcane Overexpressing Sucrose Synthesis" Journal of Composites Science 9, no. 9: 503. https://doi.org/10.3390/jcs9090503
APA StyleSakura, R. R., Sugiharto, B., Sawitri, W. D., Asrofi, M., Junus, S., Dwilaksana, D., & Fauzi, W. S. (2025). Mechanical and Structural Properties of Biocomposites Reinforced with Bagasse Fibers from Sugarcane Overexpressing Sucrose Synthesis. Journal of Composites Science, 9(9), 503. https://doi.org/10.3390/jcs9090503