Strain-Rate Dependent Behavior of Dispersed Nanocomposites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Material Characterization
2.3.1. Quasi-Static Compression
2.3.2. High-Rate Compression
3. Results and Discussion
3.1. Compression Characterization
3.1.1. Quasi-Static Compression
3.1.2. Split Hopkinson Pressure Bar
3.1.3. Strain-Rate Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(DGEBF) EPON 862 | Diglycidyl Ether of Bisphenol F |
(TETA) EPIKURE 3234 | Triethylenetetramine |
SEM | Scanning Electron Microscopy |
SHPB | Split Hopkinson Pressure Bar |
Appendix A
Material | Compressive Modulus (MPa) | |||||
---|---|---|---|---|---|---|
10−3 s−1 | 10−2 s−1 | 10−1 s−1 | 100 s−1 | 102 s−1 | 103 s−1 | |
Neat Resin | 52.37 | 45.30 | 55.78 | 53.62 | 44.90 | 45.42 |
0.1% Graphene | 50.07 | 56.16 | 57.41 | 58.46 | 44.88 | 43.56 |
0.1% Graphite | 56.17 | 56.28 | 58.66 | 45.26 | 25.49 | 26.51 |
Material | Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|
10−3 s−1 | 10−2 s−1 | 10−1 s−1 | 100 s−1 | 102 s−1 | 103 s−1 | |
Neat Resin | 103.03 | 112.64 | 121.96 | 134.11 | 206.45 | 231.55 |
0.1% Graphene | 102.20 | 113.61 | 124.49 | 135.17 | 207.46 | 229.67 |
0.1% Graphite | 99.16 | 111.02 | 117.02 | 129.55 | 94.29 | 115.14 |
Appendix B
References
- Black, J.T.; Kohser, R.A. DeGarmo’s Materials and Processes in Manufacturing, 13th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Guo, G. Ballistic Performance and Deformation Mechanisms of Fiber-Reinforced Composites in Integral Ceramic Armor Systems. Available online: https://advanceseng.com/ballistic-performance-deformation-mechanisms-fiber-reinforced-composites-integral-ceramic-armor-systems/ (accessed on 21 July 2025).
- Razali, N.; Thariq, M.; Sultan, H.; Jawaid, M. A Review on Detecting and Characterizing Damage Mechanisms of Synthetic and Natural Fiber Based Composites. BioResources 2017, 12, 9502–9519. [Google Scholar] [CrossRef]
- Guo, G.; Alam, S.; Peel, L.D. An Investigation of Deformation and Failure Mechanisms of Fiber-Reinforced Composites in Layered Composite Armor. Compos. Struct. 2022, 281, 115125. [Google Scholar] [CrossRef]
- Cantwell, W.J.; Morton, J. The Impact Resistance of Composite Materials—A Review. Composites 1991, 22, 347–362. [Google Scholar] [CrossRef]
- How to Identify the Defects and Damage in Composites Materials and Structures? Available online: https://www.addcomposites.com/post/defects-and-damage-in-composite-materials-and-structures (accessed on 21 July 2025).
- Callister, W.D.; Rethwisch, D.G. Material Science and Engineering: An Introduction, 9th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent Advances in Graphene Based Polymer Composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. Epoxy Nanocomposites—Fracture and Toughening Mechanisms. Eng. Fract. Mech. 2006, 73, 2375–2398. [Google Scholar] [CrossRef]
- Kamaraj, M.; Dodson, E.A.; Datta, S. Effect of Graphene on the Properties of Flax Fabric Reinforced Epoxy Composites. Adv. Compos. Mater. 2020, 29, 443–458. [Google Scholar] [CrossRef]
- El Marouazi, H.; van der Schueren, B.; Favier, D.; Bolley, A.; Dagorne, S.; Dintzer, T.; Janowska, I. Great Enhancement of Mechanical Features in PLA Based Composites Containing Aligned Few Layer Graphene (FLG), the Effect of FLG Loading, Size, and Dispersion on Mechanical and Thermal Properties. J. Appl. Polym. Sci. 2021, 138, 51300. [Google Scholar] [CrossRef]
- Bulut, M. Mechanical Characterization of Basalt/Epoxy Composite Laminates Containing Graphene Nanopellets. Compos. Part B Eng. 2017, 122, 71–78. [Google Scholar] [CrossRef]
- Vigneshwaran, G.V.; Shanmugavel, B.P.; Paskaramoorthy, R.; Harish, S. Tensile, Impact, and Mode-I Behaviour of Glass Fiber-Reinforced Polymer Composite Modified by Graphene Nanoplatelets. Archiv. Civ. Mech. Eng 2020, 20, 94. [Google Scholar] [CrossRef]
- Pol, M.H.; Liaghat, G. Investigation of the High Velocity Impact Behavior of Nanocomposites. Polym. Compos. 2016, 37, 1173–1179. [Google Scholar] [CrossRef]
- Shahjouei, S.; Barati, M.R.; Tooski, M.Y. High Velocity Impact Response and Damage Mechanism of an Aluminium/Glass-Carbon Fiber/Epoxy Composite Plate Reinforced with Graphene Nano-Plates. Fibers Polym. 2021, 22, 480–488. [Google Scholar] [CrossRef]
- Shadlou, S.; Ahmadi-Moghadam, B.; Taheri, F. The Effect of Strain-Rate on the Tensile and Compressive Behavior of Graphene Reinforced Epoxy/Nanocomposites. Mater. Des. 2014, 59, 439–447. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.-J. Effect of Graphene Oxide on Interfacial Interactions and Fracture Toughness of Basalt Fiber-Reinforced Epoxy Composites. J. Nanosci. Nanotechnol. 2020, 20, 6760–6767. [Google Scholar] [CrossRef] [PubMed]
- Miyambo, M.E.; Von Kallon, D.V.; Pandelani, T.; Reinecke, J.D. Review of the Development of the Split Hopkinson Pressure Bar. Procedia CIRP 2023, 119, 800–808. [Google Scholar] [CrossRef]
- Graziano, A.; Titton Dias, O.A.; Petel, O. High-strain-rate mechanical performance of particle- and fiber-reinforced polymer composites measured with split Hopkinson bar: A review. Polym. Compos. 2021, 42, 4932–4948. [Google Scholar] [CrossRef]
- Hosur, M.V.; Alexander, J.; Vaidya, U.K.; Jeelani, S. High Strain Rate Compression Response of Carbon/Epoxy Laminate Composites. Compos. Struct. 2001, 52, 405–417. [Google Scholar] [CrossRef]
- Chen, W.W.; Song, B. Split Hopkinson (Kolsky) Bar: Design, Testing and Applications; Springer: New York, NY, USA, 2011. [Google Scholar]
- Zeng, Y.; Cronin, D.; Montesano, J. Characterization of the Strain Rate-Dependent Deformation Response and Fracture Behaviour of a Three-Part Snap-Cure Epoxy Resin Under Tension and Compression Loading. J. Dyn. Behav. Mater. 2024, 11, 4–21. [Google Scholar] [CrossRef]
- Ma, L.; Liu, F.; Liu, D.; Liu, Y. Review of Strain Rate Effects of Fiber-Reinforced Polymer Composites. Polymers 2021, 13, 2839. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1575. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, H.A.; Martin, K.A.; Lessel, A.M.; McClelland, Z.B.; Wiggins, J.S. Strain-Rate Dependent Behavior of Dispersed Nanocomposites. J. Compos. Sci. 2025, 9, 478. https://doi.org/10.3390/jcs9090478
Hanna HA, Martin KA, Lessel AM, McClelland ZB, Wiggins JS. Strain-Rate Dependent Behavior of Dispersed Nanocomposites. Journal of Composites Science. 2025; 9(9):478. https://doi.org/10.3390/jcs9090478
Chicago/Turabian StyleHanna, Hayden A., Katie A. Martin, Andrew M. Lessel, Zackery B. McClelland, and Jeffery S. Wiggins. 2025. "Strain-Rate Dependent Behavior of Dispersed Nanocomposites" Journal of Composites Science 9, no. 9: 478. https://doi.org/10.3390/jcs9090478
APA StyleHanna, H. A., Martin, K. A., Lessel, A. M., McClelland, Z. B., & Wiggins, J. S. (2025). Strain-Rate Dependent Behavior of Dispersed Nanocomposites. Journal of Composites Science, 9(9), 478. https://doi.org/10.3390/jcs9090478