Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT
Abstract
1. Introduction
2. Formulation
2.1. Displacements
2.2. Stresses
2.3. Thermal Loads
2.4. Dynamic Equations
2.5. Numerical Method
3. Numerical Results
3.1. Dynamic Convergence
3.2. Time Responses
3.3. Compared Results
4. Discussions
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahmani, M.; Mohammadi, Y.; Kakavand, F.; Raeisifard, H. Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings. J. Appl. Comput. Mech. 2020, 6, 416–432. [Google Scholar]
- Javani, M.; Kiani, Y.; Eslami, M.R. Nonlinear axisymmetric response of temperature-dependent FGM conical shells under rapid heating. Acta Mech. 2019, 230, 3019–3039. [Google Scholar] [CrossRef]
- Sofiyev, A.H. Review of research on the vibration and buckling of the FGM conical shells. Compos. Struct. 2019, 211, 301–317. [Google Scholar] [CrossRef]
- Chan, D.Q.; Dung, D.V.; Hoa, L.K. Thermal buckling analysis of stiffened FGM truncated conical shells resting on elastic foundations using FSDT. Acta Mech. 2018, 229, 2221–2249. [Google Scholar] [CrossRef]
- Żur, K.K.; Arefi, M.; Kim, J.; Reddy, J. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Comp. Part B Eng. 2020, 182, 107601. [Google Scholar] [CrossRef]
- Mohammadi, M.; Arefi, M.; Dimitri, R.; Tornabene, F. Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation. Nanomaterials 2019, 9, 79. [Google Scholar] [CrossRef]
- Arefi, M.; Rabczuk, T. A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell. Compo. Part B Eng. 2019, 168, 496–510. [Google Scholar] [CrossRef]
- Arefi, M.; Bidgoli, E.M.-R.; Rabczuk, T. Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin-Walled Struct. 2019, 142, 444–459. [Google Scholar] [CrossRef]
- Sladek, J.; Sladek, V.; Repka, M.; Schmauder, S. Gradient theory for crack problems in quasicrystals. Euro. J. Mech.-A/Solids 2019, 77, 103813. [Google Scholar] [CrossRef]
- Bidgoli, E.M.-R.; Arefi, M. Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. J. Sandw. Struct. Mater. 2021, 23, 436–472. [Google Scholar] [CrossRef]
- Arefi, M.; Moghaddam, S.K.; Bidgoli, E.M.-R.; Kiani, M.; Civalek, O. Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads. Compo. Struct. 2021, 255, 112924. [Google Scholar] [CrossRef]
- Arefi, M.; Firouzeh, S.; Bidgoli, E.M.-R.; Civalek, Ö. Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Compo. Struct. 2020, 247, 112391. [Google Scholar] [CrossRef]
- Sofiyev, A.H. Application of the first order shear deformation theory to the solution of free vibration problem for laminated conical shells. Compo. Struct. 2018, 188, 340–346. [Google Scholar] [CrossRef]
- Avey, M.; Yusufoglu, E. On the solution of large-amplitude vibration of carbon nanotube-based double-curved shallow shells. Math. Methods Appl. Sci. 2020, 1–13. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.6820 (accessed on 26 August 2025). [CrossRef]
- Hong, C.C. Advanced dynamic thermal vibration of thick composited FGM cylindrical shells with fully homogeneous equation by using TSDT and nonlinear varied shear coefficient. J. Compos. Sci. 2025, 9, 4. [Google Scholar] [CrossRef]
- Bert, C.W.; Jang, S.K.; Striz, A.G. Nonlinear bending analysis of orthotropic rectangular plates by the method of differential quadrature. Comp. Mech. 1989, 5, 217–226. [Google Scholar] [CrossRef]
- Shu, C.; Du, H. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analyses of beams and plates. Int. J. Solids Struct. 1997, 34, 819–835. [Google Scholar] [CrossRef]
- Hong, C.C. GDQ computation for thermal vibration of thick FGM plates by using fully homogeneous equation and TSDT. Thin-Walled Struct. 2019, 135, 78–88. [Google Scholar] [CrossRef]
- Hong, C.C. Vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation and third-order shear deformation theory under thermal environment. J. Vib. Control 2021, 27, 2004–2017. [Google Scholar] [CrossRef]
- Garg, A.; Li, L.; Belarbi, M.-O.; Zheng, W.; Raman, R. Stochastic free vibration behavior of multi-layered helicoidal laminated composite shells under thermal conditions. J. Compos. Sci. 2025, 9, 106. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, H.; Gao, Y. Vibration analysis of multilayered quasicrystal annular plates, cylindrical shells, and truncated conical shells filled with fluid. J. Compos. Sci. 2024, 8, 433. [Google Scholar] [CrossRef]
(1/mm2) | GDQ Grids | = 6 s | |||
---|---|---|---|---|---|
= 0.5 | = 1 | = 2 | |||
0.925925 | 10 | 7 × 7 | 0.050928 | 0.051106 | 0.051598 |
9 × 9 | 0.050838 | 0.051046 | 0.051550 | ||
11 × 11 | 0.050832 | 0.051047 | 0.051537 | ||
13 × 13 | 0.050821 | 0.051034 | 0.051534 | ||
15 × 15 | 0.050824 | 0.051050 | 0.051533 | ||
17 × 17 | 0.050808 | 0.050592 | 0.051508 | ||
5 | 7 × 7 | 0.005936 | 0.006000 | 0.006200 | |
9 × 9 | 0.005891 | 0.005962 | 0.006167 | ||
11 × 11 | 0.005885 | 0.005957 | 0.006151 | ||
13 × 13 | 0.005822 | 0.005902 | 0.006110 | ||
15 × 15 | 0.005808 | 0.005887 | 0.006096 | ||
17 × 17 | 0.005682 | 0.005781 | 0.006004 | ||
0 | 10 | 7 × 7 | −0.062602 | −0.054677 | −0.095378 |
9 × 9 | 0.042434 | 0.042418 | 0.042327 | ||
11 × 11 | 0.039775 | 0.041446 | 0.042427 | ||
13 × 13 | 0.042628 | 0.042614 | 0.042349 | ||
15 × 15 | 0.042767 | 0.042717 | 0.042301 | ||
17 × 17 | 0.042469 | 0.042443 | 0.042328 | ||
5 | 7 × 7 | 0.006319 | 0.007558 | 0.010122 | |
9 × 9 | 0.006566 | 0.007779 | 0.010368 | ||
11 × 11 | 0.006470 | 0.007669 | 0.010222 | ||
13 × 13 | 0.006569 | 0.007782 | 0.010373 | ||
15 × 15 | 0.006518 | 0.007724 | 0.010293 | ||
17 × 17 | 0.006569 | 0.007782 | 0.010371 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, C.-C. Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT. J. Compos. Sci. 2025, 9, 465. https://doi.org/10.3390/jcs9090465
Hong C-C. Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT. Journal of Composites Science. 2025; 9(9):465. https://doi.org/10.3390/jcs9090465
Chicago/Turabian StyleHong, Chih-Chiang. 2025. "Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT" Journal of Composites Science 9, no. 9: 465. https://doi.org/10.3390/jcs9090465
APA StyleHong, C.-C. (2025). Thermal Stresses Vibration of Thick FGM Conical Shells by Using TSDT. Journal of Composites Science, 9(9), 465. https://doi.org/10.3390/jcs9090465