Development of a Molding Mixture for the Production of Large-Sized Casting Molds
Abstract
1. Introduction
- Compared to sand–clay molds, it provides a higher surface quality of castings produced in cement-based molds.
- Compared to organic binders, it is harmless, environmentally friendly and abundant.
- Compared to other crystalline hydrate binders, such as gypsum, it is more heat-resistant, refractory, cost-effective, and readily available.
- Low cost.
- No need for mold compaction.
- Ability to harden in air without additional drying.
- Environmental and sanitary safety.
- Low gas evolution.
- Satisfactory technological properties, including heat resistance.
- It ensures a clean casting surface. The low-melting cement particles on the surface of cast iron and steel form a light-blue oxide film (Fe oxides), which can be easily removed.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanders, S.D.; Scott, E.D.; Sullivan, G.V. A Rapid-Set Cement Suitable as a Molding Sand Binder for Small Ferrous Castings; Department of the Interior, Bureau of Mines: Washington, DC, USA, 1980; p. 8417. [Google Scholar]
- Yilmaz, O.; Anctil, A.; Karanfil, T. LCA as a decision support tool for evaluation of best available techniques (BATs) for cleaner production of iron casting. J. Clean. Prod. 2014, 105, 337–347. [Google Scholar] [CrossRef]
- Kaur, I.; Siddiq, R. Mechanical Properties of Concrete Using Spent Foundry Sand. Master’s Thesis, Dimid University, Thapar Institute of Engineering and Technology, Leicester, UK, 2006; pp. 47–53. [Google Scholar]
- Abd Saloum, Q.; Abdullah, M.Z.; Hashim, A.A. The preparation of foam cement and determining some of its properties. Eng. Technol. J. 2015, 33, 61–69. [Google Scholar] [CrossRef]
- Upadhyay, M.; Sivarupan, T.; El Mansori, M. 3D printing for rapid sand casting—A review. J. Manuf. Process. 2017, 29, 211–220. [Google Scholar] [CrossRef]
- Günther, D.; Mögele, F. Additive manufacturing of casting tools using powder-binder-jetting technology. In New Trends 3D Print; InTech: London, UK, 2016; pp. 53–86. [Google Scholar]
- Kamal, M.M.; Safan, M.A.; Etman, Z.A.; Salama, R.A. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers. HBRC J. 2014, 10, 55–63. [Google Scholar] [CrossRef]
- Mohmad Ali, I. Development of Ship Propeller Using Dynamic Casting Method. Ph.D. Thesis, Universiti Putra Malaysia, Seri Kembangan, Malaysia, 2016. [Google Scholar]
- Martynov, K.V. Ceramic Molds on a Silica Sol Binder for Investment Casting. Ph.D. Thesis, St. Petersburg State University, Saint Petersburg, Russian, 2005. Abstract of the Dissertation for the Degree of Candidate of Technical Sciences. [Google Scholar]
- Wang, J.; Ji, X.; Chen, D.; Qian, C.; Liu, G. Hydration and rheological properties of municipal sludge co-processing cement. Case Stud. Constr. Mater. 2025, 22, e04126. [Google Scholar] [CrossRef]
- Cunha, S.; Tavares, A.; Aguiar, J.B.; Castro, F. Cement mortars with ceramic molds shells and paraffin waxes wastes: Physical and mechanical behavior. Constr. Build. Mater. 2022, 342, 127949. [Google Scholar] [CrossRef]
- Ehsani, A.; Ganjian, E.; Haas, O.; Tyrer, M.; Mason, T.J. The positive effects of power ultrasound on Portland cement pastes and mortars; a study of chemical shrinkage and mechanical performance. Cem. Concr. Compos. 2023, 137, 104935. [Google Scholar] [CrossRef]
- Shrivastava, M.; Tsegaye, H.; Kumar, S.; Harish, K.V. Assessment of hydration behaviour of Portland Cement-Based materials containing brick powders as partial replacement for fine aggregates. Mater. Today Proc. 2022, 65, 1095–1104. [Google Scholar] [CrossRef]
- Pizoń, J.; Matýsková, K.; Horňáková, M.; Gołaszewska, M.; Kratošová, G. Recycled concrete paving block waste as a selected sustainable substitute for natural aggregate in cement composites. Constr. Build. Mater. 2025, 478, 141356. [Google Scholar] [CrossRef]
- Wang, H.; Feng, P.; Liu, X.; Shi, J.; Wang, C.; Wang, W.; Li, H.; Hong, J. The role of ettringite seeds in enhancing the ultra-early age strength of Portland cement containing aluminum sulfate accelerator. Compos. Part B Eng. 2024, 287, 111856. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Wang, L.; Li, L.; Zhou, Z.; Liu, Z.; Gong, L. Study on the anchoring properties of new water glass-modified alkali-activated portland cement materials. Constr. Build. Mater. 2024, 450, 138628. [Google Scholar] [CrossRef]
- Do Couto, Á.F.; Sandoval, G.F.B.; Schwantes-Cezario, N.; Christoni, A.R.F.; Cruz, R.J.P.; Da Silva, P.R.C.; Morales, G. Physicochemical evaluation of Eucalyptus Wood Ash as a mineral admixture in Portland cement matrices: A preliminary study. Case Stud. Constr. Mater. 2024, 21, e03860. [Google Scholar] [CrossRef]
- Chaves, L.R.d.C.; Heineck, K.S.; Filho, H.C.S.; Chaves, H.M.; Carvalho, J.V.d.A.; Wagner, A.C.; Silva, J.P.d.S.; Consoli, N.C. Field and laboratory study of iron ore tailings—Portland cement blends for dry stacking. Proc. Inst. Civ. Eng.-Geotech. Eng. 2025, 178, 31–40. [Google Scholar] [CrossRef]
- Yuan, J.; Chang, J.; Bai, Y. Preparation of supplementary cementitious material by semi-dry carbonated ternesite and its effect on hydration and mechanical properties of Portland cement. Cem. Concr. Res. 2025, 193, 107870. [Google Scholar] [CrossRef]
- Silva, J.; Azenha, M.; Correia, A.G.; Granja, J. Continuous monitoring of sand–cement stiffness starting from layer compaction with a resonant frequency-based method: Issues on mould geometry and sampling. Soils Found. 2014, 54, 56–66. [Google Scholar] [CrossRef]
- Bespalhuk, K.J.; de Oliveira, T.J.C.; Valverde, J.V.P.; Gonçalves, R.A.; Ferreira-Neto, L.; Souto, P.C.S.; Silva, J.R.; de Souza, N.C. Fractal analysis of microstructures in Portland cement pastes—Effect of curing conditions. Constr. Build. Mater. 2023, 363, 129881. [Google Scholar] [CrossRef]
- Yu, L.; Ma, J.; He, Y.; Lu, L. The effects and mechanisms of low-energy consumption microwave curing on the microstructure and strength development of cement-based materials. Constr. Build. Mater. 2025, 471, 140716. [Google Scholar] [CrossRef]
- Rahimi, M.Z.; Zhao, R.; Sadozai, S.; Zhu, F.; Ji, N.; Xu, L. Research on the influence of curing strategies on the compressive strength and hardening behaviour of concrete prepared with Ordinary Portland Cement. Case Stud. Constr. Mater. 2023, 18, e02045. [Google Scholar] [CrossRef]
- Ivanov, V.N.; Gagin, I.N. Prospects for the use of silica binder. Foundry Prod. 2000, 7, 42–43. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry; Voikova, A.I.; Kuznetsova, T.V., Translators; Thomas Telford Ltd.: London, UK, 1997; p. 560. [Google Scholar]
- Solouki, A.; Aliha, M.R.M.; Makui, A.; Choupani, N. Analyzing the effect of notch geometry on the impact strength of 3D-printed specimens. Mater. Test. 2023, 65, 1668–1678. [Google Scholar] [CrossRef]
- Geng, Z.; Pan, H.; Zuo, W.; She, W. Functionally graded lightweight cement-based composites with outstanding mechanical performances via additive manufacturing. Addit. Manuf. 2022, 56, 102911. [Google Scholar] [CrossRef]
- Kääntee, U.; Zevenhoven, R.; Backman, R.; Hupa, M. Cement manufacturing using alternative fuels and the advantages of process modeling. Fuel Process. Technol. 2004, 85, 293–301. [Google Scholar] [CrossRef]
- Chen, W.; Pan, J.; Zhu, B.; Ma, X.; Zhang, Y.; Chen, Y.; Li, X.; Meng, L.; Cai, J. Improving mechanical properties of 3D printable ‘one-part’ geopolymer concrete with steel fiber reinforcement. J. Build. Eng. 2023, 75, 107077. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Khayat, K.H.; Ramesh, A.; Sanjayan, J.G. Rheological characterization of ultra-high performance concrete for 3D printing. Cem. Concr. Compos. 2022, 136, 104854. [Google Scholar] [CrossRef]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Aranda, A.; Ferreira, G.; Llera, E. Characterization and environmental analysis of steel-making residues as cement manufacturing feedstock. In Proceedings of the Sixth Conference on Sustainable Development of Energy, Water and Environmental Systems, Dubrovnik, Croatia, 25–29 September 2011; p. 29. [Google Scholar]
- Ameri, B.; Taheri-Behrooz, F.; Aliha, M.R.M. Evaluation of the geometrical discontinuity effect on mixed-mode I/II fracture load of FDM 3D-printed parts. Theor. Appl. Fract. Mech. 2021, 113, 102953. [Google Scholar] [CrossRef]
- GOST 26798.1-96; Well Cements Test Methods. RussianGost: Moscow, Russia, 1998.
- GOST 1581-96; Well Portland Cements. RussianGost: Moscow, Russia, 1998.
Mixture No. | Portland Cement, wt% | Sand, wt% | Water, wt% |
---|---|---|---|
1 | 17 | 68 | 15 |
2 | 16 | 64 | 20 |
3 | 15 | 60 | 25 |
Cement (g; %) | Sand (g; %) | Quartz Powder (%) | Water (% of Dry Components) |
---|---|---|---|
18.5 | 56.5 | 25 | 25 |
Accelerator Name | Decomposition Temperature, °C | Quantity, % | Setting Time, Days |
---|---|---|---|
Sodium aluminate | 1650 | 3 | 5 h |
9% aluminum nitrate solution | 550 | 1.5 | 1 |
Kratasol | 150 | 1 | 1 |
Sodium sulfate | 200 | 3.5 | 1–3 |
Calcium chloride | 100 | 2 | 1–3 |
Asili-12 | 200 | 0.5 | 1–2 |
Calcium nitrate | 300 | 3 | 2–3 |
Accelerator Content, % | Loss of Flowability, min | 4 h | 5 h | 6 h |
---|---|---|---|---|
1 | 30 | 0.65 | 0.72 | 0.79 |
2 | 17 | 0.71 | 0.78 | 0.84 |
3 | 10 | 0.77 | 0.92 | 1.24 |
4 | 4 | 0.83 | 0.97 | 1.31 |
5 | 2 | 0.9 | 1.08 | 1.39 |
No. | Cement, % | Sand, % | Quartz Powder, % | Water, % | NaAlO2, % | Presence of Cracks Depending on Heating Rate | ||
---|---|---|---|---|---|---|---|---|
150 °C/h | 100 °C/h | 75 °C/h | ||||||
1 | 25 | 75 | - | 25 | - | yes | yes | no |
2 | 18.5 | 56.5 | 25 | 25 | - | yes | yes | no |
3 | 25 | 75 | - | 25 | 4 | yes | yes | no |
No. | Cement, % | Sand, % | Quartz Powder, % | Water, % | NaAlO2, % | Presence of Cracks Depending on Heating Rate | ||
---|---|---|---|---|---|---|---|---|
150 °C/h | 100 °C/h | 75 °C/h | ||||||
1 | 25 | 75 | - | 25 | - | yes | yes | no |
2 | 18.5 | 56.5 | 25 | 25 | - | yes | yes | no |
3 | 25 | 75 | - | 25 | 4 | yes | yes | no |
No. | Cement, % | Sand, % | Quartz Powder, % | Water, % | NaAlO2, % | Strength Before Calcination, MPa | Strength After Calcination, MPa |
---|---|---|---|---|---|---|---|
4 | 18.5 | 56.5 | 25 | 25 | 5 | 2.87 | 2.13 |
No. | Cement, % | Sand, % | Quartz Powder, % | Water, % | NaAlO2, % | Strength Before Calcination, MPa | Strength After Calcination, MPa |
---|---|---|---|---|---|---|---|
6 | 15 | 60 | 25 | 25 | 5 | 2.57 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikov, V.; Issagulov, A.; Kovalev, P.; Kvon, S.; Matveev, I.; Arinova, S. Development of a Molding Mixture for the Production of Large-Sized Casting Molds. J. Compos. Sci. 2025, 9, 436. https://doi.org/10.3390/jcs9080436
Kulikov V, Issagulov A, Kovalev P, Kvon S, Matveev I, Arinova S. Development of a Molding Mixture for the Production of Large-Sized Casting Molds. Journal of Composites Science. 2025; 9(8):436. https://doi.org/10.3390/jcs9080436
Chicago/Turabian StyleKulikov, Vitaly, Aristotel Issagulov, Pavel Kovalev, Svetlana Kvon, Igor Matveev, and Saniya Arinova. 2025. "Development of a Molding Mixture for the Production of Large-Sized Casting Molds" Journal of Composites Science 9, no. 8: 436. https://doi.org/10.3390/jcs9080436
APA StyleKulikov, V., Issagulov, A., Kovalev, P., Kvon, S., Matveev, I., & Arinova, S. (2025). Development of a Molding Mixture for the Production of Large-Sized Casting Molds. Journal of Composites Science, 9(8), 436. https://doi.org/10.3390/jcs9080436