Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing
Abstract
1. Introduction
2. Materials and Methods
- Sugarcane bagasse ash: Fly ash was collected from Ethimale Plantation (Pvt) Ltd., located in the Monaragala district of Sri Lanka. The ash sample was sieved to obtain uniform particles with a mesh size of 200 µm.
- Waste papers: Collected internally from the university premises. All collected papers were used to prepare the pulp without undergoing any categorization process.
- Water: Distilled water was used instead of tap water to prepare samples to minimize the potential effects of minerals mixed with regular water.
3. Results
3.1. Characterization
- : The particle diameter at which 10% of the sample’s total volume consists of smaller particles.
- : The median particle diameter, meaning 50% of the particles are smaller than this size.
- : The diameter below which 90% of the sample’s particles fall.
3.2. Compression Test
3.3. Tensile Test
3.4. Bending Test
- P: applied bending load,
- L: supported length,
- b: specimen width,
- t: specimen thickness.
3.5. Degradability Analysis
4. Conclusions
- Optimal Integration: SEM analysis indicated that 10–15% SCBA achieved a well-bonded matrix with minimal defects.
- Chemical Composition: FTIR analysis revealed characteristic bands of cellulose, hemicellulose, and lignin in all samples, along with additional silicate-related peaks in SCBA-modified samples, indicating 10% SCBA effective integration.
- Structural Changes: XRD analysis revealed a shift in peaks toward higher 2 angles as the SCBA content increased, suggesting a decrease in d-spacing and a denser molecular structure. To preserve an optimal balance between rigidity and flexibility, the SCBA content was appropriately limited to 15%.
- Tensile Properties: The composite containing 5% SCBA exhibited the highest tensile strength, indicating improved fiber–matrix interactions at lower SCBA contents.
- Compressive Properties: The sample with 15% SCBA demonstrated superior compressive strength, suggesting that increased SCBA content enhances the material’s resistance to compressive loads.
- Flexural Properties: Flexural strength was found to be highest in the 5% SCBA sample, likely due to optimal dispersion and bonding of the ash particles at this concentration.
- Biodegradability: The biodegradability of the composites was found to be directly proportional to the SCBA content. Samples with higher SCBA levels showed greater degradation, highlighting SCBA’s potential as an eco-friendly additive for enhancing environmental performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.H.; Murphy, R.J.; Narayan, R.; Davies, G.B.H. Biodegradable and compostable alternatives to conventional plastics. Philos. Trans. R. Soc. B 2009, 364, 2127–2139. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.; Bugusu, B. Food packaging—Roles, materials, and environmental issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef] [PubMed]
- Kusuma, H.S.; Permatasari, D.; Umar, W.K.; Sharma, S.K. Sugarcane bagasse as an environmentally friendly composite material to face the sustainable development era. Biomass Convers. Biorefinery 2024, 14, 26693–26706. [Google Scholar] [CrossRef]
- Jamil, T.; Nazli, Z.I.; Habib, F.; Jamil, M.I.; Javed, M. Utilization of cellulose nanofibrils from sugarcane bagasse in biodegradable films. Sustainability 2023, 17, 4128. [Google Scholar]
- Rainey, T.J.; Covey, G. Pulp and Paper Production from Sugarcane Bagasse. In Biomass and Bioenergy: Processing and Properties; Wiley: New York, NY, USA, 2016; Chapter 10. [Google Scholar] [CrossRef]
- Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 2008, 19, 634–643. [Google Scholar] [CrossRef]
- Samanth, M.; Hiremath, P.; Deepak, G.D.; Naik, N.; Arunkumar, H.S.; Heckadka, S.S.; Shivamurthy, R.C. Sustainable Composites from Sugarcane Bagasse Fibers and Bio-Based Epoxy with Insights into Wear Performance, Thermal Stability, and Machine Learning Predictive Modeling. J. Compos. Sci. 2025, 9, 124. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.M.; Prieto García, J.O.; Bravo Sánchez, L.R.; da Silva, M.G.C.; da Silva, V.L.; Arteaga-Pérez, L.E. Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent. J. Environ. Chem. Eng. 2021, 9, 106358. [Google Scholar] [CrossRef]
- Kulasooriya, W.G.C.M.; Sewwandi, H.M.D.U.; Vithanage, V.; Induranga, A.; Kumara, B.S.; Koswattage, K. Experimental analysis of mechanical property enhancement of paper-pulp-based packaging materials using biodegradable additives. Sustainability 2024, 16, 10310. [Google Scholar] [CrossRef]
- Amaraweera, S.M.; Gunathilake, C.; Gunawardene, O.H.; Dassanayake, R.S.; Fernando, N.M.L.; Wanninayaka, D.B.; Rajapaksha, S.M.; Manamperi, A.; Gangoda, M.; Manchanda, A.; et al. Preparation and characterization of dual-modified cassava starch-based biodegradable foams for sustainable packaging applications. ACS Omega 2022, 7, 19579–19590. [Google Scholar] [CrossRef]
- Ediyilyam, S.; George, B.; Shankar, S.S.; Dennis, T.T.; Wacławek, S.; Černík, M.; Padil, V.V.T. Chitosan/Gelatin/Silver Nanoparticles Composites Films for Biodegradable Food Packaging Applications. Polymers 2021, 13, 1680. [Google Scholar] [CrossRef]
- Reshmy, R.; Madhavan, A.; Philip, E.; Paula, S.A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Pandey, A. Sugarcane Bagasse-Derived Nanocellulose Reinforced with Frankincense (Boswellia serrata): Physicochemical Properties, Biodegradability, and Antimicrobial Effect for Controlling Microbial Growth for Food Packaging Applications. J. Appl. Polym. Sci. 2024, 141, 52298. [Google Scholar] [CrossRef]
- Rukmanikrishnan, B.; Jo, C.; Chae, J.; Kim, S.S.; Lee, J. Stretchable Composite Films Are Prepared by Using Cellulose Pulp with Differential Substitution of Carboxymethyl Cellulose and Thymol with an Infrared Heating Process for Packaging Application. J. Appl. Polym. Sci. 2024, 141, 52299. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Kim, S.S.; Rukmanikrishnan, B.; Ramalingam, S.; DS, P.; Lee, J. Properties of Cellulose Pulp and Polyurethane Composite Films Fabricated with Curcumin by Using NMMO Ionic Liquid. J. Appl. Polym. Sci. 2024, 141, 52300. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, S.; Rajeswari, N. Preparation of Low-Density Polyethylene (LDPE)/Modified Banana Epidermis Starch (MBES) Based Biodegradable Films and Their Study for Its Suitability in Food Packaging Applications. J. Appl. Polym. Sci. 2024, 141, 52301. [Google Scholar] [CrossRef]
- Kumar, A.; Gupta, V.; Singh, S.; Saini, S.; Gaikwad, K.K. Pine Needles Lignocellulosic Ethylene Scavenging Paper Impregnated with Nanozeolite for Active Packaging Applications. J. Appl. Polym. Sci. 2024, 141, 52302. [Google Scholar] [CrossRef]
- Li, T.; Zhou, Y.; Wu, Q.; Lei, H.; Zhang, Q.; Ren, S. Effects of Lignin Content on the Structure and Properties of Cellulose-Lignin Composites. Ind. Crops Prod. 2020, 154, 112572. [Google Scholar]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(Lactic Acid) Fiber: An Overview of Its Production, Properties, and Technological Application. Polym. Int. 2007, 56, 559–569. [Google Scholar]
- ASTM D828-22; ASTM International. Standard Test Method for Tensile Properties of Paper and Paperboard Using Constant-Rate-of-Elongation Apparatus. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://store.astm.org/d0828-22.html (accessed on 1 July 2025).
- Spiridon, I.; Tanase, C.E. Design, Characterization, and Evaluation of Cellulose-Lignin Biocomposites with Improved Properties. Cellulose 2018, 25, 331–343. [Google Scholar] [CrossRef]
- Aryal, R. Utilization of Sugarcane Bagasse for Production of Value-Added Products. Bachelor’s Thesis, Centria University of Applied Sciences, Kokkola, Finland, 2019. Available online: https://www.theseus.fi/bitstream/handle/10024/168918/Aryal_Rabin.pdf?sequence=3 (accessed on 1 July 2025).
- Xu, Y.; Liu, X.; Jiang, Q.; Yu, D.; Xu, Y.; Wang, B.; Xia, W. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr. Polym. 2021, 260, 117778. [Google Scholar] [CrossRef] [PubMed]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3944–3993. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Sun, R.C.; Tomkinson, J.; Ma, P.L. Characterization of lignins from wheat straw by FT-IR spectroscopy. J. Appl. Polym. Sci. 2000, 77, 638–647. [Google Scholar]
- Kondo, T.; Sawatari, C. A Fourier transform infrared spectroscopic analysis of the character of hydrogen bonds in cellulose. Polymer 1996, 37, 393–399. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to Read and Interpret FTIR Spectroscopy of Organic Material. Indones. J. Sci. Technol. 2020, 5, 97–118. [Google Scholar]
- Zhang, Y.; Liu, W.; Wang, S.; Li, C. Mechanical and Thermal Properties of Starch-Based Composites Reinforced with Modified Cellulose Fibers. Polym. Test. 2019, 80, 106089. [Google Scholar]
- Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous Cellulose—Structure and Characterization. Cellul. Chem. Technol. 2011, 45, 13–21. [Google Scholar]
- Hubbe, M.A.; Rojas, O.J.; Lucia, L.A.; Sain, M. Cellulosic Nanocomposites: A Review. BioResources 2008, 3, 929–980. [Google Scholar]
- Shingel, K.I. Determination of Structural Peculiarities of Dextran, Pullulan, and γ-Irradiated Pullulan by Fourier-Transform IR Spectroscopy. Carbohydr. Res. 2002, 337, 1445–1451. [Google Scholar] [CrossRef]
- Kumar, A.P.; Singh, J.; Singh, N. Effect of Filler Loading on Mechanical and Morphological Properties of Bagasse Fiber-Reinforced Composite. J. Reinf. Plast. Compos. 2009, 28, 687–701. [Google Scholar]
- Shen, X.; Liu, C.; Li, X.; Yue, Y.; Wu, Q.; Gao, Y. Effect of Lignin as a Natural Plasticizer on the Hydrogen Bonding Network, Thermal–Mechanical Properties, and Free Volume of Cellulose Films. Carbohydr. Polym. 2018, 195, 368–376. [Google Scholar] [CrossRef]
- Iftiquar, S.M. Structural Studies on Semiconducting Hydrogenated Amorphous Silicon Oxide Films. arXiv 2003, arXiv:condmat/0305636. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2008–2011. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
Test Method | Sample Shape | Size |
---|---|---|
SEM | ||
FTIR | Thin film | 10 mm × 10 mm × 1 mm |
XRD | 20 mm × 20 mm × 1 mm | |
Biodegradability | ||
Tensile test | Thin sheet | 250 mm × 25 mm × 1 mm |
Compression test | Cylindrical | 55 mm × 50 mm |
Bending test | Paper plate | 80 mm × 25 mm × 0.8 mm |
Sample | Water 90% | Paper | SCBA | ||
---|---|---|---|---|---|
(() × L) | Weight () × (kg) | Percentage (%) | Weight () × (kg) | Percentage (%) | |
1 | 450 | 47.50 | 95 | 2.5.00 | 5 |
2 | 450 | 45.00 | 90 | 5.00 | 10 |
3 | 450 | 42.50 | 85 | 7.50 | 15 |
4 | 450 | 40.00 | 80 | 10.00 | 20 |
5 | 450 | 37.50 | 75 | 12.50 | 25 |
Parameter | Tensile Strength Test (ASTM D828) | Flexural Strength Test (ISO 5628: 2012) |
---|---|---|
Sample length | 250 mm (Gauge length: 180 mm) | Total length: 80 mm (support span: 70 mm) |
Sample width | 25 mm (±0.1 mm) | 25 mm (±0.1 mm) |
Sample Thickness | 1 mm | 0.8 mm |
Test speed | 20 mm/min (±5 mm/min) | 5 mm/min |
Reference | [19] | [20] |
SCBA Content (%) | 2 (°) | d-Spacing (nm) |
---|---|---|
0% | 22.5 | 0.394 |
5% | 22.8 | 0.389 |
10% | 23.1 | 0.385 |
15% | 23.3 | 0.381 |
Label | Wavenumber (cm−1) | Assignment | References |
---|---|---|---|
A | 400–430 | Si–O rocking vibration (SCBA silica) | [28,29,30] |
B | 500–550 | Si–O bending modes (SCBA) | [28,29,30] |
C | 740–760 | Si–O–Si symmetric stretching (Siloxane network) | [29,30] |
D | 840–860 | Si–O rocking vibration (Amorphous silica) | [29,30] |
E | 1025–1040 | C–O stretching (alcohols, ethers, polysaccharides) (Cellulose, hemicellulose) | [24,26,31] |
F | 1160–1180 | C–O–C asymmetric stretching (glycosidic linkage) (Cellulose) | [24,26,31] |
G | 1215–1230 | C–O stretching (aromatic ethers) (Lignin, hemicellulose) | [24,26,31] |
H | 1250–1265 | C–O–C bridge/ether vibrations (Lignin) | [24,26,31] |
I | 1350–1370 | CH3 bending/COO− symmetric stretch (Cellulose, hemicellulose) | [24,26,31] |
J | 1420–1440 | CH2 bending/O–H bending (Cellulose, lignin) | [24,26,31] |
K | 1720–1750 | C=O stretching (ester, carboxyl) (Hemicellulose, lignin) | [24,26,31] |
M | 2920–2950 | C–H asymmetric stretching (CH2 groups) (Cellulose, lignin) | [24,26,31] |
N | 2990–3010 | Aromatic/aliphatic C–H stretching (Lignin) | [24,26,31] |
Composition | Initial Appearance | After 90 Days |
---|---|---|
Pulp paper-based | ||
5% SCBA | ||
10% SCBA | ||
15% SCBA | ||
20% SCBA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sewwandi, H.M.D.U.; Chathuranga, J.D.; Kulasooriya, W.G.C.M.; Induranga, D.K.A.; Indupama, S.V.A.A.; Galpaya, G.D.C.P.; Gunasena, M.K.D.M.; Priyadarshana, H.V.V.; Koswattage, K.R. Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing. J. Compos. Sci. 2025, 9, 365. https://doi.org/10.3390/jcs9070365
Sewwandi HMDU, Chathuranga JD, Kulasooriya WGCM, Induranga DKA, Indupama SVAA, Galpaya GDCP, Gunasena MKDM, Priyadarshana HVV, Koswattage KR. Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing. Journal of Composites Science. 2025; 9(7):365. https://doi.org/10.3390/jcs9070365
Chicago/Turabian StyleSewwandi, H. M. D. U., J. D. Chathuranga, W. G. C. M. Kulasooriya, D. K. A. Induranga, S. V. A. A. Indupama, G. D. C. P. Galpaya, M. K. D. M. Gunasena, H. V. V. Priyadarshana, and K. R. Koswattage. 2025. "Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing" Journal of Composites Science 9, no. 7: 365. https://doi.org/10.3390/jcs9070365
APA StyleSewwandi, H. M. D. U., Chathuranga, J. D., Kulasooriya, W. G. C. M., Induranga, D. K. A., Indupama, S. V. A. A., Galpaya, G. D. C. P., Gunasena, M. K. D. M., Priyadarshana, H. V. V., & Koswattage, K. R. (2025). Micro and Macro Analyses for Structural, Mechanical, and Biodegradability of a Pulp-Based Packaging Material: A Comprehensive Evaluation Using SEM, XRD, FTIR, and Mechanical Testing. Journal of Composites Science, 9(7), 365. https://doi.org/10.3390/jcs9070365