Influential Microstructural Descriptors for Predicting Mechanical Properties of Fiber-Reinforced Composites
Abstract
1. Introduction
2. Method
2.1. Artificial Microstructure Generation
2.1.1. Simulation-Based Generation
2.1.2. Uniform–Random Generation
2.2. Feature-Based Microstructure Characterization
2.3. Equivalent Microstructure Generation with Machine Learning
2.4. Efficient Micromechanical Model for Strength and Stiffness
2.5. Validation Using Microscopy Scans
3. Results and Discussion
3.1. Comparison of Microstructure Descriptors Based on Generation Technique
3.2. Simulated Strength and Stiffness Based on Generation Technique
3.3. Size Effect on Descriptors Measure from Scans
3.4. Regeneration of Scan Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitehead, R.S.; Kan, H.P.; Cordero, R.; Saether, E. Certification Testing Methodology for Composite Structure. Volume 2. Methodology Development; Northrop Corp., Aircraft Division: Hawthorne, CA, USA, 1986. [Google Scholar]
- Naghipour, P.; Arnold, S.M.; Pineda, E.J.; Stier, B.; Hansen, L.; Bednarcyk, B.A.; Waas, A.M. Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells. J. Compos. Mater. 2017, 51, 1433–1454. [Google Scholar] [CrossRef]
- Barlow, G.; Mollenhauer, D.; Zhou, E.; Whitcomb, J.; Stapleton, S.E. Inducing Fiber Entanglement to Achieve Realistic Tow Fiber Volume Fractions in Textile Reinforced Composite Models. Comput.-Aided Des. 2023, 162, 103546. [Google Scholar] [CrossRef]
- Woo, K.; Whitcomb, J.D. Effects of Fiber Tow Misalignment on the Engineering Properties of Plain Weave Textile Composites. Compos. Struct. 1997, 37, 343–355. [Google Scholar] [CrossRef]
- Li, Y.; Stier, B.; Bednarcyk, B.; Simon, J.-W.; Reese, S. The Effect of Fiber Misalignment on the Homogenized Properties of Unidirectional Fiber Reinforced Composites. Mech. Mater. 2016, 92, 261–274. [Google Scholar] [CrossRef]
- Schey, M.J.; Beke, T.; Appel, L.; Zabler, S.; Shah, S.; Hu, J.; Liu, F.; Maiaru, M.; Stapleton, S. Identification and Quantification of 3D Fiber Clusters in Fiber-Reinforced Composite Materials. JOM 2021, 73, 2129–2142. [Google Scholar] [CrossRef]
- Drummer, J.; Tafesh, F.; Fiedler, B. Effect of Fiber Misalignment and Environmental Temperature on the Compressive Behavior of Fiber Composites. Polymers 2023, 15, 2833. [Google Scholar] [CrossRef]
- Ahmadian, H.; Yang, M.; Nagarajan, A.; Soghrati, S. Effects of Shape and Misalignment of Fibers on the Failure Response of Carbon Fiber Reinforced Polymers. Comput. Mech. 2019, 63, 999–1017. [Google Scholar] [CrossRef]
- Schey, M.; Beke, T.; Owens, K.; George, A.; Pineda, E.; Stapleton, S. Effects of Debulking on the Fiber Microstructure and Void Distribution in Carbon Fiber Reinforced Plastics. Compos. Part A Appl. Sci. Manuf. 2023, 165, 107364. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance. J. Compos. Mater. 2019, 53, 1579–1669. [Google Scholar] [CrossRef]
- Hyde, A.; He, J.; Cui, X.; Lua, J.; Liu, L. Effects of Microvoids on Strength of Unidirectional Fiber-Reinforced Composite Materials. Compos. Part B Eng. 2020, 187, 107844. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, B.-M.; Wang, D.-F.; Wu, Z.-J. Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates. Compos. Struct. 2006, 73, 303–309. [Google Scholar] [CrossRef]
- Ashouri Vajari, D.; González, C.; Llorca, J.; Legarth, B.N. A Numerical Study of the Influence of Microvoids in the Transverse Mechanical Response of Unidirectional Composites. Compos. Sci. Technol. 2014, 97, 46–54. [Google Scholar] [CrossRef]
- Tsai, J.-L.; Chi, Y.-K. Investigating Thermal Residual Stress Effect on Mechanical Behaviors of Fiber Composites with Different Fiber Arrays. Compos. Part B Eng. 2008, 39, 714–721. [Google Scholar] [CrossRef]
- Liu, P.F.; Li, X.K. A Large-Scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress. Appl. Compos. Mater. 2018, 25, 545–560. [Google Scholar] [CrossRef]
- Shah, S.P.; Maiarù, M. Effect of Manufacturing on the Transverse Response of Polymer Matrix Composites. Polymers 2021, 13, 2491. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.P.; Maiarù, M. Analytical Model for Composite Transverse Strength Based on Computational Micromechanics. Int. J. Multiscale Comput. Eng. 2023, 21, 77–97. [Google Scholar] [CrossRef]
- Sudhir, A.; Talreja, R. Simulation of Manufacturing Induced Fiber Clustering and Matrix Voids and Their Effect on Transverse Crack Formation in Unidirectional Composites. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105620. [Google Scholar] [CrossRef]
- Ding, X.; Gu, Z.; Hou, X.; Xia, M.; Ismail, Y.; Ye, J. Effects of Defects on the Transverse Mechanical Response of Unidirectional Fibre-Reinforced Polymers: DEM Simulation and Deep Learning Prediction. Compos. Struct. 2023, 321, 117301. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Dai, G. Hybrid Carbon/Glass Fiber Composites: Micromechanical Analysis of Structure–Damage Resistance Relationships. Comput. Mater. Sci. 2014, 81, 630–640. [Google Scholar] [CrossRef]
- Ghayoor, H.; Hoa, S.V.; Marsden, C.C. A Micromechanical Study of Stress Concentrations in Composites. Compos. Part B Eng. 2018, 132, 115–124. [Google Scholar] [CrossRef]
- Elnekhaily, S.A.; Talreja, R. Damage Initiation in Unidirectional Fiber Composites with Different Degrees of Nonuniform Fiber Distribution. Compos. Sci. Technol. 2018, 155, 22–32. [Google Scholar] [CrossRef]
- Kwon, Y.W.; Allen, D.H.; Talreja, R. (Eds.) Multiscale Modeling and Simulation of Composite Materials and Structures; Springer: New York, NY, USA, 2008; ISBN 978-0-387-36318-9. [Google Scholar]
- Ghayoor, H.; Marsden, C.C.; Hoa, S.V.; Melro, A.R. Numerical Analysis of Resin-Rich Areas and Their Effects on Failure Initiation of Composites. Compos. Part A Appl. Sci. Manuf. 2019, 117, 125–133. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Bai, G. Effects of Constructing Different Unit Cells on Predicting Composite Viscoelastic Properties. Compos. Struct. 2015, 125, 459–466. [Google Scholar] [CrossRef]
- Bednarcyk, B.A.; Aboudi, J.; Arnold, S.M. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics. Int. J. Solids Struct. 2015, 69–70, 311–327. [Google Scholar] [CrossRef]
- Husseini, J.F.; Pineda, E.J.; Stapleton, S.E. Generation of Artificial 2-D Fiber Reinforced Composite Microstructures with Statistically Equivalent Features. Compos. Part A Appl. Sci. Manuf. 2023, 164, 107260. [Google Scholar] [CrossRef]
- Fast, T.; Scott, A.E.; Bale, H.A.; Cox, B.N. Topological and Euclidean Metrics Reveal Spatially Nonuniform Structure in the Entanglement of Stochastic Fiber Bundles. J. Mater. Sci. 2015, 50, 2370–2398. [Google Scholar] [CrossRef]
- Dixon, P.M. Ripley’s K Function. In Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-44511-2. [Google Scholar]
- Ripley, B.D. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 172–192. [Google Scholar] [CrossRef]
- Liu, K.C.; Ghoshal, A. Validity of Random Microstructures Simulation in Fiber-Reinforced Composite Materials. Compos. Part B Eng. 2014, 57, 56–70. [Google Scholar] [CrossRef]
- Park, S.-M.; Lim, J.H.; Seong, M.R.; Sohn, D. Efficient Generator of Random Fiber Distribution with Diverse Volume Fractions by Random Fiber Removal. Compos. Part B Eng. 2019, 167, 302–316. [Google Scholar] [CrossRef]
- Wang, W.; Dai, Y.; Zhang, C.; Gao, X.; Zhao, M. Micromechanical Modeling of Fiber-Reinforced Composites with Statistically Equivalent Random Fiber Distribution. Materials 2016, 9, 624. [Google Scholar] [CrossRef]
- Ge, W.; Wang, L.; Sun, Y.; Liu, X. An Efficient Method to Generate Random Distribution of Fibers in Continuous Fiber Reinforced Composites. Polym. Compos. 2019, 40, 4763–4770. [Google Scholar] [CrossRef]
- Sanei, S.H.R.; Barsotti, E.J.; Leonhardt, D.; Fertig, R.S. Characterization, Synthetic Generation, and Statistical Equivalence of Composite Microstructures. J. Compos. Mater. 2017, 51, 1817–1829. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Fei, S.; Wang, H.; Dong, H.; Ke, Y. Generation of Random Fiber Distributions in Fiber Reinforced Composites Based on Delaunay Triangulation. Mater. Des. 2021, 206, 109812. [Google Scholar] [CrossRef]
- Cai, C.; Wang, B.; Yin, W.; Xu, Z.; Wang, R.; He, X. A New Algorithm to Generate Non-Uniformly Dispersed Representative Volume Elements of Composite Materials with High Volume Fractions. Mater. Des. 2022, 219, 110750. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, C.; Zhu, P. Generation of Random Fiber Distributions for Unidirectional Fiber-Reinforced Composites Based on Particle Swarm Optimizer. Polym. Compos. 2019, 40, 1643–1653. [Google Scholar] [CrossRef]
- Zhang, T.; Yan, Y. A Comparison between Random Model and Periodic Model for Fiber-Reinforced Composites Based on a New Method for Generating Fiber Distributions. Polym. Compos. 2017, 38, 77–86. [Google Scholar] [CrossRef]
- Maher Saad Hayder, H.; Afrasiab, H.; Gholami, M. Efficient Generation of Random Fiber Distribution by Combining Random Sequential Expansion and Particle Swarm Optimization Algorithms. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107649. [Google Scholar] [CrossRef]
- Li, X.; McMains, S. A Voronoi Diagram Approach for Detecting Defects in 3D Printed Fiber-Reinforced Polymers from Microscope Images. Comp. Vis. Media 2023, 9, 41–56. [Google Scholar] [CrossRef]
- Ismail, Y.; Yang, D.; Ye, J. Discrete Element Method for Generating Random Fibre Distributions in Micromechanical Models of Fibre Reinforced Composite Laminates. Compos. Part B Eng. 2016, 90, 485–492. [Google Scholar] [CrossRef]
- Guo, R.; Alves, M.; Mehdikhani, M.; Breite, C.; Swolfs, Y. Synthesising Realistic 2D Microstructures of Unidirectional Fibre-Reinforced Composites with a Generative Adversarial Network. Compos. Sci. Technol. 2024, 250, 110539. [Google Scholar] [CrossRef]
- Haddani, F.; Maliki, A.E.; Lkouen, A. Random Microstructure Generation. In Proceedings of the 2nd International Conference on Embedded Systems and Artificial Intelligence (ESAI’21), Fez, Morocco, 1–2 April 2021. [Google Scholar]
- Ding, Y.; Camanho, P.P.; Silva, A. Comparison of Three Algorithms Generating Virtual Microstructures in Terms of the Degree of Randomness. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107959. [Google Scholar] [CrossRef]
- Mechin, P.-Y.; Borras, A.; Cottard, K.; Keryvin, V. A Unified Method to Generate Representative Volume Elements with Tailored Random Fibre Arrangements to Estimate the Shear and Transverse Behaviours of Unidirectional Continuous Fibres Composite Plies. J. Compos. Mater. 2025, 59, 793–805. [Google Scholar] [CrossRef]
- Méchin, P.-Y.; Borras, A.; Keryvin, V. Influence of Microstructure Randomness on the Shear Behaviour and Compressive Strength of Continuous Carbon Fibre Composites. Appl. Compos. Mater. 2024, 31, 1173–1189. [Google Scholar] [CrossRef]
- Pathan, M.V.; Tagarielli, V.L.; Patsias, S.; Baiz-Villafranca, P.M. A New Algorithm to Generate Representative Volume Elements of Composites with Cylindrical or Spherical Fillers. Compos. Part B Eng. 2017, 110, 267–278. [Google Scholar] [CrossRef]
- Riaño, L.; Joliff, Y. An AbaqusTM Plug-in for the Geometry Generation of Representative Volume Elements with Randomly Distributed Fibers and Interphases. Compos. Struct. 2019, 209, 644–651. [Google Scholar] [CrossRef]
- Hamza, M.H.; Chattopadhyay, A. Multi Deep Learning-Based Stochastic Microstructure Reconstruction and High-Fidelity Micromechanics Simulation of Time-Dependent Ceramic Matrix Composite Response. Compos. Struct. 2024, 345, 118360. [Google Scholar] [CrossRef]
- Feder, J. Random Sequential Adsorption. J. Theor. Biol. 1980, 87, 237–254. [Google Scholar] [CrossRef]
- Hinrichsen, E.L.; Feder, J.; Jøssang, T. Geometry of Random Sequential Adsorption. J. Stat. Phys. 1986, 44, 793–827. [Google Scholar] [CrossRef]
- Yang, L.; Yan, Y.; Ran, Z.; Liu, Y. A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites. Compos. Sci. Technol. 2013, 76, 14–20. [Google Scholar] [CrossRef]
- Stapleton, S.E.; Appel, L.; Simon, J.-W.; Reese, S. Representative Volume Element for Parallel Fiber Bundles: Model and Size Convergence. Compos. Part A Appl. Sci. Manuf. 2016, 87, 170–185. [Google Scholar] [CrossRef]
- Wang, X.; Guan, Z.; Du, S.; Han, G.; Zhang, M. A Long-Range Force Based Random Method for Generating Anisotropic 2D Fiber Arrangement Statistically Equivalent to Real Composites. Compos. Sci. Technol. 2019, 180, 33–43. [Google Scholar] [CrossRef]
- Li, G.; Sharifpour, F.; Bahmani, A.; Montesano, J. A New Approach to Rapidly Generate Random Periodic Representative Volume Elements for Microstructural Assessment of High Volume Fraction Composites. Mater. Des. 2018, 150, 124–138. [Google Scholar] [CrossRef]
- Wongsto, A.; Li, S. Micromechanical FE Analysis of UD Fibre-Reinforced Composites with Fibres Distributed at Random over the Transverse Cross-Section. Compos. Part A Appl. Sci. Manuf. 2005, 36, 1246–1266. [Google Scholar] [CrossRef]
- Jia, X.; Xia, Z.; Gu, B. Numerical Analyses of 3D Orthogonal Woven Composite under Three-Point Bending from Multi-Scale Microstructure Approach. Comput. Mater. Sci. 2013, 79, 468–477. [Google Scholar] [CrossRef]
- Maligno, A.; Warrior, N. Finite Element Investigations on the Microstructure of Fibre-Reinforced Composites. Express Polym. Lett. 2008, 2, 665–676. [Google Scholar] [CrossRef]
- Ge, C.; Dong, Y.; Maimaitituersun, W. Microscale Simulation on Mechanical Properties of Al/PTFE Composite Based on Real Microstructures. Materials 2016, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J.; Husseini, J.F.; Stapleton, S.E. Design of a Reduced Order Finite Element Model to Study the Effects of Microstructure Morphology on Composite Properties. In Proceedings of the 39th ASC Technical Conference, San Diego, CA, USA, 21–24 October 2024. [Google Scholar]
- Ballhause, D.; König, M.; Kröplin, B. Modelling Fabric-Reinforced Membranes with the Discrete Element Method. In Textile Composites and Inflatable Structures II; Oñate, E., Kröplin, B., Eds.; Computational Methods in Applied Sciences; Springer: Dordrecht, The Netherlands, 2008; pp. 51–67. ISBN 978-1-4020-6856-0. [Google Scholar]
- Bednarcyk, B.A.; Aboudi, J.; Arnold, S.M. Micromechanics of Composite Materials Governed by Vector Constitutive Laws. Int. J. Solids Struct. 2017, 110–111, 137–151. [Google Scholar] [CrossRef]
- Pineda, E.; Bednarcyk, B.; Waas, A.; Arnold, S. On Multiscale Modeling Using the Generalized Method of Cells: Preserving Energy Dissipation across Disparate Length Scales. Comput. Mater. Contin. 2013, 35, 119–154. [Google Scholar] [CrossRef]
- Aboudi, J. The Generalized Method of Cells and High-Fidelity Generalized Method of Cells Micromechanical Models—A Review. Mech. Adv. Mater. Struct. 2004, 11, 329–366. [Google Scholar] [CrossRef]
- Ricks, T.M.; Lacy, T.E.; Bednarcyk, B.A.; Arnold, S.M.; Hutchins, J.W. A Multiscale Progressive Failure Modeling Methodology for Composites That Includes Fiber Strength Stochastics. Comput. Mater. Contin. 2014, 40, 99–129. [Google Scholar]
- Zhou, J.; Qi, L.; Gokhale, A.M. Generation of Three-Dimensional Microstructure Model for Discontinuously Reinforced Composite by Modified Random Sequential Absorption Method. J. Eng. Mater. Technol. 2016, 138, 021003. [Google Scholar] [CrossRef]
- Herráez, M.; Mora, D.; Naya, F.; Lopes, C.S.; González, C.; LLorca, J. Transverse Cracking of Cross-Ply Laminates: A Computational Micromechanics Perspective. Compos. Sci. Technol. 2015, 110, 196–204. [Google Scholar] [CrossRef]
- Segurado, J.; Llorca, J. A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites. J. Mech. Phys. Solids 2002, 50, 2107–2121. [Google Scholar] [CrossRef]
- Pourkamali-Anaraki, F.; Husseini, J.F.; Pineda, E.J.; Bednarcyk, B.A.; Stapleton, S.E. Two-Stage Surrogate Modeling for Data-Driven Design Optimization with Application to Composite Microstructure Generation. Eng. Appl. Artif. Intell. 2024, 138, 109436. [Google Scholar] [CrossRef]
- HexTow Laminate Properties in HexPly® 8552 | Hexcel. Available online: https://www.hexcel.com/Products/Resources/1664/hextow-laminate-properties-in-hexply-8552 (accessed on 17 July 2024).
- Flores, M.; Sharits, A.; Wheeler, R.; Sesar, N.; Mollenhauer, D. Experimental Analysis of Polymer Matrix Composite Microstructures under Transverse Compression Loading. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106859. [Google Scholar] [CrossRef]
- Arndt, C.M.; de Carvalho, N.V.; Czabaj, M.W. Experimental Reexamination of Transverse Tensile Strength for IM7/8552 Tape-Laminate Composites. J. Compos. Mater. 2020, 54, 3297–3312. [Google Scholar] [CrossRef]
- Stuckner, J.; Harder, B.; Smith, T.M. Microstructure Segmentation with Deep Learning Encoders Pre-Trained on a Large Microscopy Dataset. npj Comput. Mater. 2022, 8, 200. [Google Scholar] [CrossRef]
Parameter | Variable | Minimum | Maximum |
---|---|---|---|
Global volume fraction | 0.20 | 0.80 | |
Number of fibers | 16 | 400 | |
Minimum spacing | |||
Number of fibers per cell | 2 | ||
Margin | 0.00 | ||
Contact Damping | 0.05 | 1.00 | |
Global Damping | 0.05 | 1.00 |
4.67 | 0.36 | 121 |
276 | 14 | 0.26 | 0.26 | 20 |
Microstructure Number | ||||||
---|---|---|---|---|---|---|
1 | 0.516 | 0.307 | 0.099 | 0.477 | 0.028 | 0.028 |
2 | 0.696 | 0.178 | 0.347 | 0.394 | 0.012 | 0.027 |
3 | 0.678 | 0.203 | 0.281 | 0.412 | 0.019 | 0.048 |
4 | 0.703 | 0.189 | 0.348 | 0.389 | 0.011 | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husseini, J.F.; Carey, E.J.; Pourkamali-Anaraki, F.; Pineda, E.J.; Bednarcyk, B.A.; Stapleton, S.E. Influential Microstructural Descriptors for Predicting Mechanical Properties of Fiber-Reinforced Composites. J. Compos. Sci. 2025, 9, 363. https://doi.org/10.3390/jcs9070363
Husseini JF, Carey EJ, Pourkamali-Anaraki F, Pineda EJ, Bednarcyk BA, Stapleton SE. Influential Microstructural Descriptors for Predicting Mechanical Properties of Fiber-Reinforced Composites. Journal of Composites Science. 2025; 9(7):363. https://doi.org/10.3390/jcs9070363
Chicago/Turabian StyleHusseini, Jamal F., Eric J. Carey, Farhad Pourkamali-Anaraki, Evan J. Pineda, Brett A. Bednarcyk, and Scott E. Stapleton. 2025. "Influential Microstructural Descriptors for Predicting Mechanical Properties of Fiber-Reinforced Composites" Journal of Composites Science 9, no. 7: 363. https://doi.org/10.3390/jcs9070363
APA StyleHusseini, J. F., Carey, E. J., Pourkamali-Anaraki, F., Pineda, E. J., Bednarcyk, B. A., & Stapleton, S. E. (2025). Influential Microstructural Descriptors for Predicting Mechanical Properties of Fiber-Reinforced Composites. Journal of Composites Science, 9(7), 363. https://doi.org/10.3390/jcs9070363