Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating
Abstract
:1. Introduction
2. Computational Methods
2.1. Simulated Models
2.2. Atomistic Simulation Protocol
2.3. Coarse-Grained Simulation Protocol
3. Simulation Analysis
3.1. End-to-End Distance
3.2. Radius of Gyration
3.3. Polymer Coating Thickness
3.4. Brush Height
3.5. Statistical Analysis
4. Results and Discussion
4.1. Polymer Chain Stretching, Conformational Brushes, and Terminal Group Presentation
Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) |
---|---|---|
AA simulation (Replica #1) | 1.25 (±0.39) | 1.98 (±0.41) |
AA simulation (Replica #2) | 1.25 (±0.46) | 2.00 (±0.47) |
AA simulation (Replica #3) | 1.28 (±0.47) | 1.95 (±0.42) |
AA simulations avg (±std) | 1.26 (±0.26) | 1.98 (±0.25) |
CG simulation (Replica #1) | 1.85 (±0.39) | 2.11 (±0.27) |
CG simulation (Replica #2) | 1.85 (±0.37) | 2.11 (±0.27) |
CG simulation (Replica #3) | 1.82 (±0.39) | 2.11 (±0.27) |
CG simulations avg (±std) | 1.84 (±0.22) | 2.11 (±0.16) |
4.2. Radius of Gyration as a Descriptor of Conformational Transitions
Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) |
---|---|---|
AA simulation (Replica #1) | 0.58 (±0.09) | 0.67 (±0.10) |
AA simulation (Replica #2) | 0.57 (±0.09) | 0.68 (±0.11) |
AA simulation (Replica #3) | 0.60 (±0.08) | 0.66 (±0.10) |
AA simulations avg (±std) | 0.58 (±0.05) | 0.67 (±0.06) |
CG simulation (Replica #1) | 0.69 (±0.07) | 0.73 (±0.06) |
CG simulation (Replica #2) | 0.69 (±0.06) | 0.73 (±0.06) |
CG simulation (Replica #3) | 0.69 (±0.07) | 0.73 (±0.06) |
CG simulations avg (±std) | 0.69 (±0.04) | 0.73 (±0.03) |
4.3. Modulation of Coating Thickness and Solvation Stability Through Grafting Density
Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) | ||
---|---|---|---|---|
Coating Thickness | Brush Height | Coating Thickness | Brush Height | |
AA simulation (Replica #1) | 0.77 | 0.63 ± 0.35 | 1.67 | 1.65 ± 0.40 |
AA simulation (Replica #2) | 0.70 | 0.68 ± 0.34 | 1.83 | 1.73 ± 0.47 |
AA simulation (Replica #3) | 0.63 | 0.60 ± 0.23 | 1.63 | 1.64 ± 0.38 |
AA simulations avg (±std) | 0.70 (0.06) | 0.64 (±0.18) | 1.71 (0.09) | 1.67 (±0.24) |
CG simulation (Replica #1) | 0.85 | 0.89 (±0.31) | 1.85 | 2.07 (±0.38) |
CG simulation (Replica #2) | 0.83 | 0.87 (±0.29) | 1.88 | 2.07 (±0.37) |
CG simulation (Replica #3) | 0.80 | 0.86 (±0.29) | 1.85 | 2.07 (±0.37) |
CG simulations avg (±std) | 0.83 (0.02) | 0.87 (±0.17) | 1.86 (0.01) | 2.07 (±0.22) |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NP | Nanoparticle |
AuNP | Gold nanoparticle |
ALK | Alkyl |
PEG | Polyethylene Glycol |
ALK-PEG | Alkyl Polyethylene glycol |
AA | Atomistic |
CG | Coarse-grained |
Rg | Radius of gyration |
References
- Webster, T.J. Nanomedicine: What’s in a Definition? Int. J. Nanomed. 2006, 1, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Bouché, M.; Hsu, J.C.; Dong, Y.C.; Kim, J.; Taing, K.; Cormode, D.P. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug. Chem. 2020, 31, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Alle, M.; Sharma, G.; Lee, S.-H.; Kim, J.-C. Next-Generation Engineered Nanogold for Multimodal Cancer Therapy and Imaging: A Clinical Perspectives. J. Nanobiotechnol. 2022, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Turkmen Koc, S.N.; Rezaei Benam, S.; Aral, I.P.; Shahbazi, R.; Ulubayram, K. Gold Nanoparticles-Mediated Photothermal and Photodynamic Therapies for Cancer. Int. J. Pharm. 2024, 655, 124057. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Yung, L.-Y.L.; Tan, P.H.; Bay, B.H. Harnessing the Immunogenic Potential of Gold Nanoparticle-Based Platforms as a Therapeutic Strategy in Breast Cancer Immunotherapy: A Mini Review. Front. Immunol. 2022, 13, 865554. [Google Scholar] [CrossRef]
- Wu, L.-P.; Wang, D.; Li, Z. Grand Challenges in Nanomedicine. Mater. Sci. Eng. C 2020, 106, 110302. [Google Scholar] [CrossRef]
- Kurul, F.; Turkmen, H.; Cetin, A.E.; Topkaya, S.N. Nanomedicine: How Nanomaterials Are Transforming Drug Delivery, Bio-Imaging, and Diagnosis. Next Nanotechnol. 2025, 7, 100129. [Google Scholar] [CrossRef]
- Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles: Opportunities and Challenges in Nanomedicine. Expert. Opin. Drug Deliv. 2010, 7, 753–763. [Google Scholar] [CrossRef]
- De Souza, R.M.; Siani, P.; Schmidt, T.F.; Itri, R.; Dias, L.G. Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation. J. Phys. Chem. B 2017, 121, 8512–8522. [Google Scholar] [CrossRef]
- Siani, P.; de Souza, R.M.; Dias, L.G.; Itri, R.; Khandelia, H. An Overview of Molecular Dynamics Simulations of Oxidized Lipid Systems, with a Comparison of ELBA and MARTINI Force Fields for Coarse Grained Lipid Simulations. Biochim. Biophys. Acta BBA-Biomembr. 2016, 1858, 2498–2511. [Google Scholar] [CrossRef]
- Riley, R.S.; Day, E.S. Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1449. [Google Scholar] [CrossRef] [PubMed]
- Siani, P.; Di Valentin, C. Effect of Dopamine-Functionalization, Charge and PH on Protein Corona Formation around TiO2 Nanoparticles. Nanoscale 2022, 14, 5121–5137. [Google Scholar] [CrossRef] [PubMed]
- Piella, J.; Bastús, N.G.; Puntes, V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjug. Chem. 2017, 28, 88–97. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Wu, D.; Shen, X.; Liu, P.-X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y.-M.; Zhang, L.-A.; Fan, F.-Y. Size-Dependent in Vivo Toxicity of PEG-Coated Gold Nanoparticles. Int. J. Nanomed. 2011, 6, 2071. [Google Scholar] [CrossRef]
- Tarnawski, R.; Ulbricht, M. Amphiphilic Gold Nanoparticles: Synthesis, Characterization and Adsorption to PEGylated Polymer Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 13–21. [Google Scholar] [CrossRef]
- Lin, C.-A.J.; Sperling, R.A.; Li, J.K.; Yang, T.Y.; Li, P.-Y.; Zanell, M.; Chang, W.H.; Parak, W.J. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. In Bio-Nano Interfaces; Jenny Stanford Publishing: New York, NY, USA, 2024; pp. 361–379. [Google Scholar]
- Motta, S.; Siani, P.; Levy, A.; Di Valentin, C. Exploring the Drug Loading Mechanism of Photoactive Inorganic Nanocarriers through Molecular Dynamics Simulations. Nanoscale 2021, 13, 13000–13013. [Google Scholar] [CrossRef]
- Motta, S.; Siani, P.; Donadoni, E.; Frigerio, G.; Bonati, L.; Di Valentin, C. Metadynamics Simulations for the Investigation of Drug Loading on Functionalized Inorganic Nanoparticles. Nanoscale 2023, 15, 7909–7919. [Google Scholar] [CrossRef]
- Frigerio, G.; Motta, S.; Siani, P.; Donadoni, E.; Di Valentin, C. Unveiling the Drug Delivery Mechanism of Graphene Oxide Dots at the Atomic Scale. J. Control. Release 2025, 379, 344–362. [Google Scholar] [CrossRef]
- Donadoni, E.; Siani, P.; Frigerio, G.; Milani, C.; Cui, Q.; Di Valentin, C. The Effect of Polymer Coating on Nanoparticles’ Interaction with Lipid Membranes Studied by Coarse-Grained Molecular Dynamics Simulations. Nanoscale 2024, 16, 9108–9122. [Google Scholar] [CrossRef]
- Gonçalves, I.C.; Martins, M.C.L.; Barbosa, M.A.; Naeemi, E.; Ratner, B.D. Selective Protein Adsorption Modulates Platelet Adhesion and Activation to Oligo(Ethylene Glycol)-Terminated Self-Assembled Monolayers with C18 Ligands. J. Biomed. Mater. Res. A 2009, 89, 642–653. [Google Scholar] [CrossRef]
- Martins, M.C.L.; Ochoa-Mendes, V.; Ferreira, G.; Barbosa, J.N.; Curtin, S.A.; Ratner, B.D.; Barbosa, M.A. Interactions of Leukocytes and Platelets with Poly(Lysine/Leucine) Immobilized on Tetraethylene Glycol-Terminated Self-Assembled Monolayers. Acta Biomater. 2011, 7, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Donadoni, E.; Siani, P.; Gambari, S.; Campi, D.; Frigerio, G.; Di Valentin, C. Optimizing Polyethylene Glycol Coating for Stealth Nanodiamonds. ACS Appl. Mater. Interfaces 2025, 17, 19304–19316. [Google Scholar] [CrossRef] [PubMed]
- Dahal, U.; Dormidontova, E.E. Chain Conformation and Hydration of Polyethylene Oxide Grafted to Gold Nanoparticles: Curvature and Chain Length Effect. Macromolecules 2020, 53, 8160–8170. [Google Scholar] [CrossRef]
- Brancolini, G.; Toroz, D.; Corni, S. Can Small Hydrophobic Gold Nanoparticles Inhibit β2-Microglobulin Fibrillation? Nanoscale 2014, 6, 7903–7911. [Google Scholar] [CrossRef]
- Colangelo, E.; Chen, Q.; Davidson, A.M.; Paramelle, D.; Sullivan, M.B.; Volk, M.; Lévy, R. Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. Langmuir 2017, 33, 438–449. [Google Scholar] [CrossRef]
- Gabellini, C.; Şologan, M.; Pellizzoni, E.; Marson, D.; Daka, M.; Franchi, P.; Bignardi, L.; Franchi, S.; Posel, Z.; Baraldi, A.; et al. Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles. ACS Nano 2022, 16, 20902–20914. [Google Scholar] [CrossRef]
- Şologan, M.; Marson, D.; Polizzi, S.; Pengo, P.; Boccardo, S.; Pricl, S.; Posocco, P.; Pasquato, L. Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core. ACS Nano 2016, 10, 9316–9325. [Google Scholar] [CrossRef]
- Siani, P.; Khandelia, H.; Orsi, M.; Dias, L.G. Parameterization of a Coarse-Grained Model of Cholesterol with Point-Dipole Electrostatics. J. Comput. Aided Mol. Des. 2018, 32, 1259–1271. [Google Scholar] [CrossRef]
- Franco-Ulloa, S.; Riccardi, L.; Rimembrana, F.; Grottin, E.; Pini, M.; De Vivo, M. NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. J. Chem. Theory Comput. 2023, 19, 1582–1591. [Google Scholar] [CrossRef]
- Franco-Ulloa, S.; Riccardi, L.; Rimembrana, F.; Pini, M.; De Vivo, M. Nano Modeler: A Webserver for Molecular Simulations and Engineering of Nanoparticles. J. Chem. Theory Comput. 2019, 15, 2022–2032. [Google Scholar] [CrossRef]
- Corbierre, M.K.; Cameron, N.S.; Lennox, R.B. Polymer-Stabilized Gold Nanoparticles with High Grafting Densities. Langmuir 2004, 20, 2867–2873. [Google Scholar] [CrossRef]
- Lu, J.; Xue, Y.; Shi, R.; Kang, J.; Zhao, C.-Y.; Zhang, N.-N.; Wang, C.-Y.; Lu, Z.-Y.; Liu, K. A Non-Sacrificial Method for the Quantification of Poly(Ethylene Glycol) Grafting Density on Gold Nanoparticles for Applications in Nanomedicine. Chem. Sci. 2019, 10, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Solving Software Challenges for Exascale; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015; Volume 8759, pp. 3–27. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.-Y.R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39 (Suppl. 2), W511–W517. [Google Scholar] [CrossRef]
- Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Phys. Chem. Chem. Phys. 2010, 12, 7821. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef] [PubMed]
- Heinz, H.; Lin, T.-J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Nosé, S.; Klein, M.L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50, 1055–1076. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Michalowsky, J.; Schäfer, L.V.; Holm, C.; Smiatek, J. A Refined Polarizable Water Model for the Coarse-Grained MARTINI Force Field with Long-Range Electrostatic Interactions. J. Chem. Phys. 2017, 146, 054501. [Google Scholar] [CrossRef]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef]
- Michalowsky, J.; Zeman, J.; Holm, C.; Smiatek, J. A Polarizable MARTINI Model for Monovalent Ions in Aqueous Solution. J. Chem. Phys. 2018, 149, 163319. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, F.; Alessandri, R.; Kroon, P.C.; Monticelli, L.; Souza, P.C.T.; Marrink, S.J. Polyply; a Python Suite for Facilitating Simulations of Macromolecules and Nanomaterials. Nat. Commun. 2022, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Fuchs, P.F.J.; Barnoud, J.; Monticelli, L. A Coarse-Grained MARTINI Model of Polyethylene Glycol and of Polyoxyethylene Alkyl Ether Surfactants. J. Phys. Chem. B 2012, 116, 14353–14362. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, F.; Rossi, G.; de Vries, A.H.; Marrink, S.J.; Monticelli, L. Transferable MARTINI Model of Poly(Ethylene Oxide). J. Phys. Chem. B 2018, 122, 7436–7449. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Siani, P.; Bianchetti, E.; Di Valentin, C. Building up Accurate Atomistic Models of Biofunctionalized Magnetite Nanoparticles from First-Principles Calculations. NPJ Comput. Mater. 2025, 11, 20. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Krpetić, Ž.; Davidson, A.M.; Volk, M.; Lévy, R.; Brust, M.; Cooper, D.L. High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano 2013, 7, 8881–8890. [Google Scholar] [CrossRef]
- Siani, P.; Frigerio, G.; Donadoni, E.; Di Valentin, C. Modeling Zeta Potential for Nanoparticles in Solution: Water Flexibility Matters. J. Phys. Chem. C 2023, 127, 9236–9247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siani, P.; Donadoni, E.; Frigerio, G.; D’Alessio, M.; Di Valentin, C. Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. J. Compos. Sci. 2025, 9, 294. https://doi.org/10.3390/jcs9060294
Siani P, Donadoni E, Frigerio G, D’Alessio M, Di Valentin C. Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. Journal of Composites Science. 2025; 9(6):294. https://doi.org/10.3390/jcs9060294
Chicago/Turabian StyleSiani, Paulo, Edoardo Donadoni, Giulia Frigerio, Marialaura D’Alessio, and Cristiana Di Valentin. 2025. "Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating" Journal of Composites Science 9, no. 6: 294. https://doi.org/10.3390/jcs9060294
APA StyleSiani, P., Donadoni, E., Frigerio, G., D’Alessio, M., & Di Valentin, C. (2025). Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. Journal of Composites Science, 9(6), 294. https://doi.org/10.3390/jcs9060294