Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating
Abstract
1. Introduction
2. Computational Methods
2.1. Simulated Models
2.2. Atomistic Simulation Protocol
2.3. Coarse-Grained Simulation Protocol
3. Simulation Analysis
3.1. End-to-End Distance
3.2. Radius of Gyration
3.3. Polymer Coating Thickness
3.4. Brush Height
3.5. Statistical Analysis
4. Results and Discussion
4.1. Polymer Chain Stretching, Conformational Brushes, and Terminal Group Presentation
| Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) |
|---|---|---|
| AA simulation (Replica #1) | 1.25 (±0.39) | 1.98 (±0.41) |
| AA simulation (Replica #2) | 1.25 (±0.46) | 2.00 (±0.47) |
| AA simulation (Replica #3) | 1.28 (±0.47) | 1.95 (±0.42) |
| AA simulations avg (±std) | 1.26 (±0.26) | 1.98 (±0.25) |
| CG simulation (Replica #1) | 1.85 (±0.39) | 2.11 (±0.27) |
| CG simulation (Replica #2) | 1.85 (±0.37) | 2.11 (±0.27) |
| CG simulation (Replica #3) | 1.82 (±0.39) | 2.11 (±0.27) |
| CG simulations avg (±std) | 1.84 (±0.22) | 2.11 (±0.16) |
4.2. Radius of Gyration as a Descriptor of Conformational Transitions
| Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) |
|---|---|---|
| AA simulation (Replica #1) | 0.58 (±0.09) | 0.67 (±0.10) |
| AA simulation (Replica #2) | 0.57 (±0.09) | 0.68 (±0.11) |
| AA simulation (Replica #3) | 0.60 (±0.08) | 0.66 (±0.10) |
| AA simulations avg (±std) | 0.58 (±0.05) | 0.67 (±0.06) |
| CG simulation (Replica #1) | 0.69 (±0.07) | 0.73 (±0.06) |
| CG simulation (Replica #2) | 0.69 (±0.06) | 0.73 (±0.06) |
| CG simulation (Replica #3) | 0.69 (±0.07) | 0.73 (±0.06) |
| CG simulations avg (±std) | 0.69 (±0.04) | 0.73 (±0.03) |
4.3. Modulation of Coating Thickness and Solvation Stability Through Grafting Density
| Simulation Resolution | 1 Ligand/nm2 (nm) | 5 Ligands/nm2 (nm) | ||
|---|---|---|---|---|
| Coating Thickness | Brush Height | Coating Thickness | Brush Height | |
| AA simulation (Replica #1) | 0.77 | 0.63 ± 0.35 | 1.67 | 1.65 ± 0.40 |
| AA simulation (Replica #2) | 0.70 | 0.68 ± 0.34 | 1.83 | 1.73 ± 0.47 |
| AA simulation (Replica #3) | 0.63 | 0.60 ± 0.23 | 1.63 | 1.64 ± 0.38 |
| AA simulations avg (±std) | 0.70 (0.06) | 0.64 (±0.18) | 1.71 (0.09) | 1.67 (±0.24) |
| CG simulation (Replica #1) | 0.85 | 0.89 (±0.31) | 1.85 | 2.07 (±0.38) |
| CG simulation (Replica #2) | 0.83 | 0.87 (±0.29) | 1.88 | 2.07 (±0.37) |
| CG simulation (Replica #3) | 0.80 | 0.86 (±0.29) | 1.85 | 2.07 (±0.37) |
| CG simulations avg (±std) | 0.83 (0.02) | 0.87 (±0.17) | 1.86 (0.01) | 2.07 (±0.22) |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| NP | Nanoparticle |
| AuNP | Gold nanoparticle |
| ALK | Alkyl |
| PEG | Polyethylene Glycol |
| ALK-PEG | Alkyl Polyethylene glycol |
| AA | Atomistic |
| CG | Coarse-grained |
| Rg | Radius of gyration |
References
- Webster, T.J. Nanomedicine: What’s in a Definition? Int. J. Nanomed. 2006, 1, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Bouché, M.; Hsu, J.C.; Dong, Y.C.; Kim, J.; Taing, K.; Cormode, D.P. Recent Advances in Molecular Imaging with Gold Nanoparticles. Bioconjug. Chem. 2020, 31, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Alle, M.; Sharma, G.; Lee, S.-H.; Kim, J.-C. Next-Generation Engineered Nanogold for Multimodal Cancer Therapy and Imaging: A Clinical Perspectives. J. Nanobiotechnol. 2022, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Turkmen Koc, S.N.; Rezaei Benam, S.; Aral, I.P.; Shahbazi, R.; Ulubayram, K. Gold Nanoparticles-Mediated Photothermal and Photodynamic Therapies for Cancer. Int. J. Pharm. 2024, 655, 124057. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Yung, L.-Y.L.; Tan, P.H.; Bay, B.H. Harnessing the Immunogenic Potential of Gold Nanoparticle-Based Platforms as a Therapeutic Strategy in Breast Cancer Immunotherapy: A Mini Review. Front. Immunol. 2022, 13, 865554. [Google Scholar] [CrossRef]
- Wu, L.-P.; Wang, D.; Li, Z. Grand Challenges in Nanomedicine. Mater. Sci. Eng. C 2020, 106, 110302. [Google Scholar] [CrossRef]
- Kurul, F.; Turkmen, H.; Cetin, A.E.; Topkaya, S.N. Nanomedicine: How Nanomaterials Are Transforming Drug Delivery, Bio-Imaging, and Diagnosis. Next Nanotechnol. 2025, 7, 100129. [Google Scholar] [CrossRef]
- Arvizo, R.; Bhattacharya, R.; Mukherjee, P. Gold Nanoparticles: Opportunities and Challenges in Nanomedicine. Expert. Opin. Drug Deliv. 2010, 7, 753–763. [Google Scholar] [CrossRef]
- De Souza, R.M.; Siani, P.; Schmidt, T.F.; Itri, R.; Dias, L.G. Methylene Blue Location in (Hydroperoxized) Cardiolipin Monolayer: Implication in Membrane Photodegradation. J. Phys. Chem. B 2017, 121, 8512–8522. [Google Scholar] [CrossRef]
- Siani, P.; de Souza, R.M.; Dias, L.G.; Itri, R.; Khandelia, H. An Overview of Molecular Dynamics Simulations of Oxidized Lipid Systems, with a Comparison of ELBA and MARTINI Force Fields for Coarse Grained Lipid Simulations. Biochim. Biophys. Acta BBA-Biomembr. 2016, 1858, 2498–2511. [Google Scholar] [CrossRef]
- Riley, R.S.; Day, E.S. Gold Nanoparticle-mediated Photothermal Therapy: Applications and Opportunities for Multimodal Cancer Treatment. WIREs Nanomed. Nanobiotechnol. 2017, 9, e1449. [Google Scholar] [CrossRef] [PubMed]
- Siani, P.; Di Valentin, C. Effect of Dopamine-Functionalization, Charge and PH on Protein Corona Formation around TiO2 Nanoparticles. Nanoscale 2022, 14, 5121–5137. [Google Scholar] [CrossRef] [PubMed]
- Piella, J.; Bastús, N.G.; Puntes, V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjug. Chem. 2017, 28, 88–97. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Wu, D.; Shen, X.; Liu, P.-X.; Yang, N.; Zhao, B.; Zhang, H.; Sun, Y.-M.; Zhang, L.-A.; Fan, F.-Y. Size-Dependent in Vivo Toxicity of PEG-Coated Gold Nanoparticles. Int. J. Nanomed. 2011, 6, 2071. [Google Scholar] [CrossRef]
- Tarnawski, R.; Ulbricht, M. Amphiphilic Gold Nanoparticles: Synthesis, Characterization and Adsorption to PEGylated Polymer Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2011, 374, 13–21. [Google Scholar] [CrossRef]
- Lin, C.-A.J.; Sperling, R.A.; Li, J.K.; Yang, T.Y.; Li, P.-Y.; Zanell, M.; Chang, W.H.; Parak, W.J. Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. In Bio-Nano Interfaces; Jenny Stanford Publishing: New York, NY, USA, 2024; pp. 361–379. [Google Scholar]
- Motta, S.; Siani, P.; Levy, A.; Di Valentin, C. Exploring the Drug Loading Mechanism of Photoactive Inorganic Nanocarriers through Molecular Dynamics Simulations. Nanoscale 2021, 13, 13000–13013. [Google Scholar] [CrossRef]
- Motta, S.; Siani, P.; Donadoni, E.; Frigerio, G.; Bonati, L.; Di Valentin, C. Metadynamics Simulations for the Investigation of Drug Loading on Functionalized Inorganic Nanoparticles. Nanoscale 2023, 15, 7909–7919. [Google Scholar] [CrossRef]
- Frigerio, G.; Motta, S.; Siani, P.; Donadoni, E.; Di Valentin, C. Unveiling the Drug Delivery Mechanism of Graphene Oxide Dots at the Atomic Scale. J. Control. Release 2025, 379, 344–362. [Google Scholar] [CrossRef]
- Donadoni, E.; Siani, P.; Frigerio, G.; Milani, C.; Cui, Q.; Di Valentin, C. The Effect of Polymer Coating on Nanoparticles’ Interaction with Lipid Membranes Studied by Coarse-Grained Molecular Dynamics Simulations. Nanoscale 2024, 16, 9108–9122. [Google Scholar] [CrossRef]
- Gonçalves, I.C.; Martins, M.C.L.; Barbosa, M.A.; Naeemi, E.; Ratner, B.D. Selective Protein Adsorption Modulates Platelet Adhesion and Activation to Oligo(Ethylene Glycol)-Terminated Self-Assembled Monolayers with C18 Ligands. J. Biomed. Mater. Res. A 2009, 89, 642–653. [Google Scholar] [CrossRef]
- Martins, M.C.L.; Ochoa-Mendes, V.; Ferreira, G.; Barbosa, J.N.; Curtin, S.A.; Ratner, B.D.; Barbosa, M.A. Interactions of Leukocytes and Platelets with Poly(Lysine/Leucine) Immobilized on Tetraethylene Glycol-Terminated Self-Assembled Monolayers. Acta Biomater. 2011, 7, 1949–1955. [Google Scholar] [CrossRef] [PubMed]
- Donadoni, E.; Siani, P.; Gambari, S.; Campi, D.; Frigerio, G.; Di Valentin, C. Optimizing Polyethylene Glycol Coating for Stealth Nanodiamonds. ACS Appl. Mater. Interfaces 2025, 17, 19304–19316. [Google Scholar] [CrossRef] [PubMed]
- Dahal, U.; Dormidontova, E.E. Chain Conformation and Hydration of Polyethylene Oxide Grafted to Gold Nanoparticles: Curvature and Chain Length Effect. Macromolecules 2020, 53, 8160–8170. [Google Scholar] [CrossRef]
- Brancolini, G.; Toroz, D.; Corni, S. Can Small Hydrophobic Gold Nanoparticles Inhibit β2-Microglobulin Fibrillation? Nanoscale 2014, 6, 7903–7911. [Google Scholar] [CrossRef]
- Colangelo, E.; Chen, Q.; Davidson, A.M.; Paramelle, D.; Sullivan, M.B.; Volk, M.; Lévy, R. Computational and Experimental Investigation of the Structure of Peptide Monolayers on Gold Nanoparticles. Langmuir 2017, 33, 438–449. [Google Scholar] [CrossRef]
- Gabellini, C.; Şologan, M.; Pellizzoni, E.; Marson, D.; Daka, M.; Franchi, P.; Bignardi, L.; Franchi, S.; Posel, Z.; Baraldi, A.; et al. Spotting Local Environments in Self-Assembled Monolayer-Protected Gold Nanoparticles. ACS Nano 2022, 16, 20902–20914. [Google Scholar] [CrossRef]
- Şologan, M.; Marson, D.; Polizzi, S.; Pengo, P.; Boccardo, S.; Pricl, S.; Posocco, P.; Pasquato, L. Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core. ACS Nano 2016, 10, 9316–9325. [Google Scholar] [CrossRef]
- Siani, P.; Khandelia, H.; Orsi, M.; Dias, L.G. Parameterization of a Coarse-Grained Model of Cholesterol with Point-Dipole Electrostatics. J. Comput. Aided Mol. Des. 2018, 32, 1259–1271. [Google Scholar] [CrossRef]
- Franco-Ulloa, S.; Riccardi, L.; Rimembrana, F.; Grottin, E.; Pini, M.; De Vivo, M. NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. J. Chem. Theory Comput. 2023, 19, 1582–1591. [Google Scholar] [CrossRef]
- Franco-Ulloa, S.; Riccardi, L.; Rimembrana, F.; Pini, M.; De Vivo, M. Nano Modeler: A Webserver for Molecular Simulations and Engineering of Nanoparticles. J. Chem. Theory Comput. 2019, 15, 2022–2032. [Google Scholar] [CrossRef]
- Corbierre, M.K.; Cameron, N.S.; Lennox, R.B. Polymer-Stabilized Gold Nanoparticles with High Grafting Densities. Langmuir 2004, 20, 2867–2873. [Google Scholar] [CrossRef]
- Lu, J.; Xue, Y.; Shi, R.; Kang, J.; Zhao, C.-Y.; Zhang, N.-N.; Wang, C.-Y.; Lu, Z.-Y.; Liu, K. A Non-Sacrificial Method for the Quantification of Poly(Ethylene Glycol) Grafting Density on Gold Nanoparticles for Applications in Nanomedicine. Chem. Sci. 2019, 10, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In Solving Software Challenges for Exascale; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015; Volume 8759, pp. 3–27. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; van der Spoel, D.; et al. GROMACS 4.5: A High-Throughput and Highly Parallel Open Source Molecular Simulation Toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Vanquelef, E.; Simon, S.; Marquant, G.; Garcia, E.; Klimerak, G.; Delepine, J.C.; Cieplak, P.; Dupradeau, F.-Y.R.E.D. Server: A Web Service for Deriving RESP and ESP Charges and Building Force Field Libraries for New Molecules and Molecular Fragments. Nucleic Acids Res. 2011, 39 (Suppl. 2), W511–W517. [Google Scholar] [CrossRef]
- Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Phys. Chem. Chem. Phys. 2010, 12, 7821. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P.A. A Well-Behaved Electrostatic Potential Based Method Using Charge Restraints for Deriving Atomic Charges: The RESP Model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef] [PubMed]
- Heinz, H.; Lin, T.-J.; Kishore Mishra, R.; Emami, F.S. Thermodynamically Consistent Force Fields for the Assembly of Inorganic, Organic, and Biological Nanostructures: The INTERFACE Force Field. Langmuir 2013, 29, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A Package for Building Initial Configurations for Molecular Dynamics Simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Nosé, S.; Klein, M.L. Constant Pressure Molecular Dynamics for Molecular Systems. Mol. Phys. 1983, 50, 1055–1076. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Michalowsky, J.; Schäfer, L.V.; Holm, C.; Smiatek, J. A Refined Polarizable Water Model for the Coarse-Grained MARTINI Force Field with Long-Range Electrostatic Interactions. J. Chem. Phys. 2017, 146, 054501. [Google Scholar] [CrossRef]
- Marrink, S.J.; Risselada, H.J.; Yefimov, S.; Tieleman, D.P.; de Vries, A.H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111, 7812–7824. [Google Scholar] [CrossRef]
- Michalowsky, J.; Zeman, J.; Holm, C.; Smiatek, J. A Polarizable MARTINI Model for Monovalent Ions in Aqueous Solution. J. Chem. Phys. 2018, 149, 163319. [Google Scholar] [CrossRef] [PubMed]
- Grünewald, F.; Alessandri, R.; Kroon, P.C.; Monticelli, L.; Souza, P.C.T.; Marrink, S.J. Polyply; a Python Suite for Facilitating Simulations of Macromolecules and Nanomaterials. Nat. Commun. 2022, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Fuchs, P.F.J.; Barnoud, J.; Monticelli, L. A Coarse-Grained MARTINI Model of Polyethylene Glycol and of Polyoxyethylene Alkyl Ether Surfactants. J. Phys. Chem. B 2012, 116, 14353–14362. [Google Scholar] [CrossRef] [PubMed]
- Grunewald, F.; Rossi, G.; de Vries, A.H.; Marrink, S.J.; Monticelli, L. Transferable MARTINI Model of Poly(Ethylene Oxide). J. Phys. Chem. B 2018, 122, 7436–7449. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Siani, P.; Bianchetti, E.; Di Valentin, C. Building up Accurate Atomistic Models of Biofunctionalized Magnetite Nanoparticles from First-Principles Calculations. NPJ Comput. Mater. 2025, 11, 20. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Krpetić, Ž.; Davidson, A.M.; Volk, M.; Lévy, R.; Brust, M.; Cooper, D.L. High-Resolution Sizing of Monolayer-Protected Gold Clusters by Differential Centrifugal Sedimentation. ACS Nano 2013, 7, 8881–8890. [Google Scholar] [CrossRef]
- Siani, P.; Frigerio, G.; Donadoni, E.; Di Valentin, C. Modeling Zeta Potential for Nanoparticles in Solution: Water Flexibility Matters. J. Phys. Chem. C 2023, 127, 9236–9247. [Google Scholar] [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siani, P.; Donadoni, E.; Frigerio, G.; D’Alessio, M.; Di Valentin, C. Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. J. Compos. Sci. 2025, 9, 294. https://doi.org/10.3390/jcs9060294
Siani P, Donadoni E, Frigerio G, D’Alessio M, Di Valentin C. Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. Journal of Composites Science. 2025; 9(6):294. https://doi.org/10.3390/jcs9060294
Chicago/Turabian StyleSiani, Paulo, Edoardo Donadoni, Giulia Frigerio, Marialaura D’Alessio, and Cristiana Di Valentin. 2025. "Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating" Journal of Composites Science 9, no. 6: 294. https://doi.org/10.3390/jcs9060294
APA StyleSiani, P., Donadoni, E., Frigerio, G., D’Alessio, M., & Di Valentin, C. (2025). Computational Study of Ultra-Small Gold Nanoparticles with Amphiphilic Polymer Coating. Journal of Composites Science, 9(6), 294. https://doi.org/10.3390/jcs9060294

