The Performance Characterization of a Drop-on-Demand Inkjet-Printed Gold Film Under the Temperature Conditions for Airborne Equipment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Experimental Setup
3. Environmental Test Procedure for Airborne Equipment
- Test 1. Operating at High Temperature Test.
- Test 2. Ground Survival High Temperature Test
- Test 3. Ground Survival High Temperature and Short Temperature Test
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chong, M.-X.; Li, C.-T.; Zhang, L.-X.; Bie, L.-J. A high-performance impedimetric humidity sensor based on lead-free halide perovskite Cs2TeCl6. Sens. Actuators A Phys. 2023, 351, 114153. [Google Scholar] [CrossRef]
- Bastola, A.; He, Y.; Im, J.; Wang, F. Formulation of functional materials for inkjet printing: A pathway towards fully 3D printed electronics. Mater. Today Electron. 2023, 6, 100058. [Google Scholar] [CrossRef]
- Paulsen, J.A.; Renn, M.; Christenson, K.; Plourde, R. Printing conformal electronics on 3D structures with Aerosol Jet technology. In Proceedings of the 2012 Future of Instrumentation International Workshop (FIIW) Proceedings, Gatlinburg, TN, USA, 8–9 October 2012. [Google Scholar]
- Tilford, T.; Stoyanov, S.; Braun, J.; Janhsen, J.C. Comparative Reliability of Inkjet-Printed Electronics Packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 351–362. [Google Scholar] [CrossRef]
- Bernasconi, R.; Hatami, D.; Hosseinabadi, H.N.; Zega, V.; Corigliano, A.; Suriano, R.; Levi, M.; Langfelder, G.; Magagnin, L. Hybrid additive manufacturing of a piezopolymer-based inertial sensor. Addit. Manuf. 2022, 59, 103091. [Google Scholar] [CrossRef]
- Neff, C.; Elston, E.; Burfeindt, M.; Crane, N.; Schrand, A. A fundamental study of printed ink resiliency for harsh mechanical and thermal environmental applications. Addit. Manuf. 2018, 20, 156–163. [Google Scholar] [CrossRef]
- Kašpar; Koyuncu, A.H.; Pittermannová, A.; Ulbrich, P.; Tokárová, V. Governing factors for preparation of silver nanoparticles using droplet-based microfluidic device. Biomed. Microdevices 2019, 21, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Abulikemu, M.; Da’as, E.H.; Haverinen, H.; Cha, D.; Malik, M.A.; Jabbour, G.E. In Situ Synthesis of Self-Assembled Gold Nanoparticles on Glass or Silicon Substrates through Reactive Inkjet Printing. Angew. Chem. 2014, 126, 430–433. [Google Scholar] [CrossRef]
- Zhang, J.; Ahmadi, M.; Fargas, G.; Perinka, N.; Reguera, J.; Lanceros-Méndez, S.; Llanes, L.; Jiménez-Piqué, E. Silver Nanoparticles for Conductive Inks: From Synthesis and Ink Formulation to Their Use in Printing Technologies. Metals 2022, 12, 234. [Google Scholar] [CrossRef]
- Jäger, J.; Schwenck, A.; Walter, D.; Bülau, A.; Gläser, K.; Zimmermann, A. Inkjet-Printed Temperature Sensors Characterized according to Standards. Sensors 2022, 22, 8145. [Google Scholar] [CrossRef] [PubMed]
- Acosta, C.; Flynn, W.P.; Garnsey, S.; Dipon, W.; Guo, R.; Bhalla, A. Low-temperature characterization of inkjet printed silver nanoparticles on polyimide substrate for the temperature range of −5 °C to −75 °C. Sens. Actuators A Phys. 2024, 374, 115483. [Google Scholar] [CrossRef]
- Rahman, M.T.; Cheng, C.-Y.; Karagoz, B.; Renn, M.; Schrandt, M.; Gellman, A.; Panat, R. High Performance Flexible Temperature Sensors via Nanoparticle Printing. ACS Appl. Nano Mater. 2019, 2, 3280–3291. [Google Scholar] [CrossRef]
- Babalola, B.J.; Ayodele, O.O.; Olubambi, P.A. Sintering of nanocrystalline materials: Sintering parameters. Heliyon 2023, 9, 14070. [Google Scholar] [CrossRef] [PubMed]
- Malti, A.; Kardani, A.; Montazeri, A. An insight into the temperature-dependent sintering mechanisms of metal nanoparticles through MD-based microstructural analysis. Powder Technol. 2021, 386, 30–39. [Google Scholar] [CrossRef]
- DO-160; Environmental Conditions and Test Procedures for Airborne Equipment. RTCA: Washington, DC, USA, 1991.
- Frey, H. Handbook of Thin Film Technology; Springer: Berlin, Germany, 2015. [Google Scholar]
- Oliva, I.; Lugo, J.M. Measurement of the Temperature Coefficient of Resistance in Metallic Films with Nano-thickness. Int. J. Thermophys. 2016, 37, 35. [Google Scholar] [CrossRef]
- Oliva, A.; Lugo, J.; Gurubel-Gonzalez, R.; Centeno, R.; Corona, J.; Avilés, F. Temperature coefficient of resistance and thermal expansion coefficient. Thin Solid Film. 2017, 623, 84–89. [Google Scholar] [CrossRef]
- Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 1978, 11, 689–694. [Google Scholar] [CrossRef]
- Alshatnawi, F.; Alhendi, M.; Abbara, E.M.; Sivasubramony, R.; Garakani, B.; Enakerakpo, E.; Shaddock, D.; Stoffel, N.; Hoel, C.; Poliks, M.D.; et al. Electrical and Mechanical Behavior of Aerosol Jet–PrintedGold on Alumina Substrate for High-Temperature Applications. Adv. Eng. Mater. 2023, 25, 2300439. [Google Scholar] [CrossRef]
Equipment/Device | Model |
---|---|
Power Supply (DC) | NI PS-15 |
Data Acquisition System | CDAQ 9184 |
Voltage Input | NI-9215 |
Current Output | NI-9265 |
Temperature Input Module | NI-9213 |
Thermocouples | Type-E (Thermo Sensor®) |
Electrode Material | Indium |
Integrating | Ag Wire |
Wiring | Belden 8441 Twisted pair Shielded wire |
Temperature Change | Notes |
---|---|
Temperature changes not specified | |
Time for equipment temperature to stabilize | |
min minimum | |
Ambient | |
Temperature Change | Notes |
---|---|
Temperature changes not specified | |
Time for equipment temperature to stabilize | |
h minimum | |
Ambient | |
Temperature Change | Note |
---|---|
Temperature changes not specified | |
Time for temperature stabilization plus a minimum of 2 h. | |
min or time for stabilization and min minimum | |
Ambient | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta, C.; Flynn, W.P.; Santillan, L.; Garnsey, S.; Bhalla, A.S.; Guo, R. The Performance Characterization of a Drop-on-Demand Inkjet-Printed Gold Film Under the Temperature Conditions for Airborne Equipment. J. Compos. Sci. 2025, 9, 231. https://doi.org/10.3390/jcs9050231
Acosta C, Flynn WP, Santillan L, Garnsey S, Bhalla AS, Guo R. The Performance Characterization of a Drop-on-Demand Inkjet-Printed Gold Film Under the Temperature Conditions for Airborne Equipment. Journal of Composites Science. 2025; 9(5):231. https://doi.org/10.3390/jcs9050231
Chicago/Turabian StyleAcosta, Carlos, William Paul Flynn, Luis Santillan, Sean Garnsey, Amar S. Bhalla, and Ruyan Guo. 2025. "The Performance Characterization of a Drop-on-Demand Inkjet-Printed Gold Film Under the Temperature Conditions for Airborne Equipment" Journal of Composites Science 9, no. 5: 231. https://doi.org/10.3390/jcs9050231
APA StyleAcosta, C., Flynn, W. P., Santillan, L., Garnsey, S., Bhalla, A. S., & Guo, R. (2025). The Performance Characterization of a Drop-on-Demand Inkjet-Printed Gold Film Under the Temperature Conditions for Airborne Equipment. Journal of Composites Science, 9(5), 231. https://doi.org/10.3390/jcs9050231