Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Part
2.1.1. Materials
2.1.2. Elaboration of Carboxymethylated Starch (CMS)
2.1.3. Preparation of Fe3O4 Nanoparticles
2.1.4. Synthesis of Carboxymethyl Starch-g-Polyvinylimidazole (CMS-g-PVI)
2.1.5. Preparation of CMS-g-PVI/PVA/Fe3O4 Magnetic Hydrogel Beads
2.1.6. Characterization
2.1.7. Heavy Metal Adsorption Test
2.2. Computational Details
3. Results and Discussion
3.1. Characterization of m-CVP Pearls
3.1.1. Influence of pH on Adsorption
3.1.2. Effect of the Amount of Adsorbent
3.1.3. Adsorption Isotherms
3.2. Computational Results
3.2.1. Method Selection
3.2.2. Model Structure
3.2.3. HOMO-LUMO Calculations
3.2.4. Molecular Electrostatic Potential Map (MPEM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Jaiswal, A.; Verma, A.; Jaiswal, P. Detrimental Effects of Heavy Metals in Soil, Plants, and Aquatic Ecosystems and in Humans. J. Environ. Pathol. Toxicol. Oncol. 2018, 37, 183–197. [Google Scholar] [CrossRef]
- Chan, W.S.; Routh, J.; Luo, C.; Dario, M.; Miao, Y.; Luo, D.; Wei, L. Metal accumulations in aquatic organisms and health risks in an acid mine-affected site in South China. Environ. Geochem. Health 2021, 43, 4415–4440. [Google Scholar] [CrossRef] [PubMed]
- Barwick, M.; Maher, W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar. Environ. Res. 2003, 56, 471–502. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Rekha, R. Trace Metals in the Aquatic Environment and its Effect on Aquatic Life and Human Body. Int. J. Sci. Res. 2023, 12, 789–795. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, W.; Zhou, T.; Li, X. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Sci. Total Environ. 2019, 678, 253–266. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and removal of heavy metal ions: A review. Environ. Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2018, 17, 729–754. [Google Scholar] [CrossRef]
- Duan, C.; Ma, T.; Wang, J.; Zhou, Y. Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process Eng. 2020, 37, 101339. [Google Scholar] [CrossRef]
- Nazaripour, M.; Reshadi, M.A.M.; Mirbagheri, S.A.; Nazaripour, M.; Bazargan, A. Research trends of heavy metal removal from aqueous environments. J. Environ. Manag. 2021, 287, 112322. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Livinalli, N.F.; Silvestre, W.P.; Duarte, J.; Peretti, I.; Baldasso, C. Study of reverse osmosis performance for manganese and iron removal from raw freshwater. Chem. Eng. Commun. 2023, 210, 1961–1971. [Google Scholar] [CrossRef]
- Hoslett, J.; Massara, T.M.; Malamis, S.; Ahmad, D.; Van Den Boogaert, I.; Katsou, E.; Ahmad, B.; Ghazal, H.; Simons, S.; Wrobel, L.; et al. Surface water filtration using granular media and membranes: A review. Sci. Total Environ. 2018, 639, 1268–1282. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.; Lo, W.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Vaaramaa, K.; Lehto, J. Removal of metals and anions from drinking water by ion exchange. Desalination 2003, 155, 157–170. [Google Scholar] [CrossRef]
- Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Krstić, V.; Urošević, T.; Pešovski, B. A review on adsorbents for treatment of water and wastewaters containing copper ions. Chem. Eng. Sci. 2018, 192, 273–287. [Google Scholar] [CrossRef]
- Manzoor, K.; Ahmad, M.; Ahmad, S.; Ikram, S. Synthesis, Characterization, Kinetics, and Thermodynamics of EDTA-Modified Chitosan-Carboxymethyl Cellulose as Cu(II) Ion Adsorbent. ACS Omega 2019, 4, 17425–17437. [Google Scholar] [CrossRef]
- Sheth, Y.; Dharaskar, S.; Khalid, M.; Sonawane, S. An environment friendly approach for heavy metal removal from industrial wastewater using chitosan based biosorbent: A review. Sustain. Energy Technol. Assess. 2020, 43, 100951. [Google Scholar] [CrossRef]
- Gupta, A.D.; Rawat, K.; Bhadauria, V.; Singh, H. Recent trends in the application of modified starch in the adsorption of heavy metals from water: A review. Carbohydr. Polym. 2021, 269, 117763. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Yu, H.; Wang, L.; Abdin, Z.U.; Chen, Y.; Wang, J.; Zhou, W.; Yang, X.; Khan, R.U.; Zhang, H.; et al. Recent progress in chemical modification of starch and its applications. RSC Adv. 2015, 5, 67459–67474. [Google Scholar] [CrossRef]
- Lemma, E.; Kiflie, Z.; Kassahun, S.K. Adsorption of Cr (VI) ion from aqueous solution on acrylamide—Grafted starch (Coccinia abyssinicca)—PVA/PVP/chitosan/graphene oxide blended hydrogel: Isotherms, kinetics, and thermodynamics studies. Sep. Sci. Technol. 2022, 58, 241–256. [Google Scholar] [CrossRef]
- Ounkaew, A.; Kasemsiri, P.; Kamwilaisak, K.; Saengprachatanarug, K.; Mongkolthanaruk, W.; Souvanh, M.; Pongsa, U.; Chindaprasirt, P. Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from Spent Coffee Ground and Citric Acid. J. Polym. Environ. 2018, 26, 3762–3772. [Google Scholar] [CrossRef]
- Haq, F.; Yu, H.; Wang, L.; Teng, L.; Mehmood, S.; Haroon, M.; Amin, B.; Fahad, S.; Uddin, M.A.; Shen, D. Synthesis of carboxymethyl starch grafted polyvinyl imidazole (CMS-g-PVIs) and their role as an absorbent for the removal of phenol. Environ. Eng. Res. 2020, 26, 200327. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, W.; Yang, X.; Li, Y. Efficient removal of heavy metal ions from aqueous solution by a novel poly (1-vinylimidazole) chelate resin. Polym. Bull. 2018, 76, 1081–1097. [Google Scholar] [CrossRef]
- Abid, Z.; Hakiki, A.; Boukoussa, B.; Launay, F.; Hamaizi, H.; Bengueddach, A.; Hamacha, R. Preparation of highly hydrophilic PVA/SBA-15 composite materials and their adsorption behavior toward cationic dye: Effect of PVA content. J. Mater. Sci. 2019, 54, 7679–7691. [Google Scholar] [CrossRef]
- Chen, Q.; Tang, Z.; Li, H.; Wu, M.; Zhao, Q.; Pan, B. An electron-scale comparative study on the adsorption of six divalent heavy metal cations on MnFe2O4@CAC hybrid: Experimental and DFT investigations. Chem. Eng. J. 2019, 381, 122656. [Google Scholar] [CrossRef]
- Sellaoui, L.; Hessou, E.P.; Badawi, M.; Netto, M.S.; Dotto, G.L.; Silva, L.F.O.; Tielens, F.; Ifthikar, J.; Bonilla-Petriciolet, A.; Chen, Z. Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chem. Eng. J. 2020, 420, 127712. [Google Scholar] [CrossRef]
- Sellaoui, L.; Mendoza-Castillo, D.; Reynel-Ávila, H.; Ávila-Camacho, B.; Díaz-Muñoz, L.; Ghalla, H.; Bonilla-Petriciolet, A.; Lamine, A.B. Understanding the adsorption of Pb2+, Hg2+ and Zn2+ from aqueous solution on a lignocellulosic biomass char using advanced statistical physics models and density functional theory simulations. Chem. Eng. J. 2019, 365, 305–316. [Google Scholar] [CrossRef]
- Melhi, S.; Jan, S.U.; Khan, A.A.; Badshah, K.; Ullah, S.; Bostan, B.; Selamoglu, Z. Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach. Crystals 2022, 12, 189. [Google Scholar] [CrossRef]
- Liang, L.; Han, M.; Liu, Y.; Huang, C.; Leng, Y.; Zhang, Y.; Cai, X. Schiff base functionalized dialdehyde starch for enhanced removal of Cu (II): Preparation, performances, DFT calculations. Int. J. Biol. Macromol. 2024, 268, 131424. [Google Scholar] [CrossRef]
- Tahini, H.A.; Tan, X.; Smith, S.C. Computational Materials Science: Discovering and Accelerating Future Technologies. Adv. Theory Simul. 2019, 2, 1900023. [Google Scholar] [CrossRef]
- Jie, Y.; Wen-ren, C.; Manurung, R.M.; Ganzeveld, K.J.; Heeres, H.J. Exploratory Studies on the Carboxymethylation of Cassava Starch in Water-miscible Organic Media. Starch—Stärke 2004, 56, 100–107. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Xing, J.; Liu, H. Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 2003, 270, 1–6. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Q.; Pan, Y.; Li, Y.; Huang, Z.; Li, M.; Xiao, H. Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. Int. J. Biol. Macromol. 2020, 163, 309–316. [Google Scholar] [CrossRef]
- Frisch, M.J. Revisión B. 01; Gaussiano. Inc.: Wallingford, CT, USA, 2018. [Google Scholar]
- Giroday, T.; Montero-Campillo, M.M.; Mora-Diez, N. Thermodynamic stability of PFOS: M06-2X and B3LYP comparison. Comput. Theor. Chem. 2014, 1046, 81–92. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuß, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Komulainen, S.; Verlackt, C.; Pursiainen, J.; Lajunen, M. Oxidation and degradation of native wheat starch by acidic bromate in water at room temperature. Carbohydr. Polym. 2012, 93, 73–80. [Google Scholar] [CrossRef]
- Kara, A. Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal. J. Hazard. Mater. 2004, 106, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Ajji, Z.; Ali, A.M. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting. J. Hazard. Mater. 2009, 173, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Niksefat, M.; Rahimi, J.; Hajizadeh, Z. Design and preparation of Fe3O4 @PVA polymeric magnetic nanocomposite film and surface coating by sulfonic acid via in situ methods and evaluation of its catalytic performance in the synthesis of dihydropyrimidines. BMC Chem. 2019, 13, 19. [Google Scholar] [CrossRef]
- Llanos, J.H.; Tadini, C.C. Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int. J. Biol. Macromol. 2017, 107, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Duwiejuah, A.B.; Cobbina, S.J.; Bakobie, N. Review of Eco-Friendly Biochar Used in the Removal of Trace Metals on Aqueous Phases. Int. J. Environ. Bioremediation Biodegrad. 2017, 5, 27–40. [Google Scholar] [CrossRef]
- Freundlich, H. Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Trans. Faraday Soc. 1932, 28, 195–201. [Google Scholar] [CrossRef]
Metals | Qm (mg/g) | KL (L/mg) | KF ((mg/g)(L/mg)1/n) | n |
---|---|---|---|---|
Cu | 141.49 | 0.0071 | 3.38 | 1.64 |
Pb | 114.9 | 0.0068 | 2.64 | 1.63 |
Cd | 80.17 | 0.0094 | 2.85 | 1.8 |
Molecule | Method | Electronic Energy (Hartree) | Total Dipole Moment (TDM) (Debye) |
---|---|---|---|
Starch | B3LYP/6-311+(d,p) | −1908.957412 | 14.523141 |
M06-2X/6-311+(d,p) | −1908.241466 | 14.854373 | |
B3LYP/6-31++(d,p) | −1908.438131 | 14.527266 | |
CMS | B3LYP/6-311+(d,p) | −2136.889038 | 16.429113 |
M06-2X/6-311+(d,p) | −2136.087336 | 16.811855 | |
B3LYP/6-31++(d,p) | −2136.365691 | 16.390449 | |
CMS-g-PVI | B3LYP/6-311+(d,p) | −2479.884884 | 18.630028 |
M06-2X/6-311+(d,p) | −2478.954755 | 19.185673 | |
B3LYP/6-31++(d,p) | −2479.294827 | 18.482310 | |
CMS-g-PVI/PVA | B3LYP/6-311+(d,p) | −3058.575745 | 20.810176 |
M06-2X/6-311+(d,p) | −3057.75875 | 18.101795 | |
B3LYP/6-31++(d,p) | −3057.878126 | 16.211895 |
Structure | Total Dipole Moment (TDM) (Debye) | HOMO eV | LUMO eV | ∆E eV |
---|---|---|---|---|
Starch | 14.522835 | −0.24911 | −0.04027 | 0.20884 |
Starch + Cu | 14.857359 | −0.06968 | −0.03980 | 0.02988 |
Starch + Pb | 20.412808 | −0.05430 | −0.01985 | 0.03445 |
Starch + Cd | 18.647506 | −0.06234 | −0.02526 | 0.03708 |
CMS-g-PVI/PVA | 20.810176 | −0.08064 | −0.10666 | −0.02602 |
CMS-g-PVI/PVA + Cu | 18.250570 | −0.03550 | −0.06630 | −0.03080 |
CMS-g-PVI/PVA + Pd | 25.290852 | −0.04420 | −0.02668 | 0.01752 |
CMS-g-PVI/PVA + Cd | 23.333746 | −0.05253 | −0.02948 | 0.0235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, J.A.H.; Prieto Palomo, J.A.; Toloza, C.A.T. Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres. J. Compos. Sci. 2025, 9, 193. https://doi.org/10.3390/jcs9040193
Fernández JAH, Prieto Palomo JA, Toloza CAT. Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres. Journal of Composites Science. 2025; 9(4):193. https://doi.org/10.3390/jcs9040193
Chicago/Turabian StyleFernández, Joaquín Alejandro Hernández, Jose Alfonso Prieto Palomo, and Carlos A. T. Toloza. 2025. "Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres" Journal of Composites Science 9, no. 4: 193. https://doi.org/10.3390/jcs9040193
APA StyleFernández, J. A. H., Prieto Palomo, J. A., & Toloza, C. A. T. (2025). Theoretical/Experimental Study of the Heavy Metals in Poly(vinylalcohol)/Carboxymethyl Starch-g-Poly(vinyl imidazole)-Based Magnetic Hydrogel Microspheres. Journal of Composites Science, 9(4), 193. https://doi.org/10.3390/jcs9040193