Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Process Parameters
2.2. Channel Cross-Section Geometries and Maximum FVC
2.3. Plan of Experiments
2.4. Tensile Test Specimens and Test Procedure
2.5. Analytical Estimation of the Tensile Behavior
2.6. Numerical Models
2.7. Microscopy
3. Results
3.1. Prediction of the Young’s Modulus
3.2. Tensile Test Results
3.2.1. Failure Mechanism
3.2.2. Measurement Data and Characteristic Values
3.3. Microscopic Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fetting, C. The European Green Deal; ESDN Office: Vienna, Austria, 2020. [Google Scholar]
- Kroll, L. Technologiefusion Für Multifunktionale Leichtbaustrukturen: Ressourceneffizienz Durch Die Schlüsseltechnologie Leichtbau; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9783662547342. [Google Scholar]
- Spickenheuer, A. Zur Fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den Extremen Leichtbau auf Basis des Variabelaxialen Fadenablageverfahrens Tailored Fiber Placement. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2014. [Google Scholar]
- Bittrich, L.; Spickenheuer, A.; Almeida, J.H.S.; Müller, S.; Kroll, L.; Heinrich, G. Optimizing Variable-Axial Fiber-Reinforced Composite Laminates: The Direct Fiber Path Optimization Concept. Math. Probl. Eng. 2019, 2019, 8260563. [Google Scholar] [CrossRef]
- Punera, D.; Mukherjee, P. Recent developments in manufacturing, mechanics, and design optimization of variable stiffness composites. J. Reinf. Plast. Compos. 2022, 41, 917–945. [Google Scholar] [CrossRef]
- Maciel, M.M.Á.D.; Amico, S.; Guedes, R.M.; Tita, V. Evolution of variable angle tow composite structures: Data analysis and relevance of the theme. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2025, 239, 1730–1743. [Google Scholar] [CrossRef]
- Hyer, M.W.; Charette, R.F. Use of curvilinear fiber format in composite structure design. AIAA J. 1991, 29, 1011–1015. [Google Scholar] [CrossRef]
- Carosella, S.; Hügle, S.; Helber, F.; Middendorf, P. A short review on recent advances in automated fiber placement and filament winding technologies. Compos. Part. B Eng. 2024, 287, 111843. [Google Scholar] [CrossRef]
- Brasington, A.; Sacco, C.; Halbritter, J.; Wehbe, R.; Harik, R. Automated fiber placement: A review of history, current technologies, and future paths forward. Compos. Part. C Open Access 2021, 6, 100182. [Google Scholar] [CrossRef]
- Wohlers Associates; Wohlers, T.T.; Campbell, R.I.; Diegel, O.; Kowen, J.; Huff, R.; Mostow, N.; Fidan, I.; Bourell, D.L.; van Rensburg, J.; et al. Wohlers Report 2022: 3D Printing and Additive Manufacturing Global State of the Industry; Wohlers Associates: Fort Collins, CO, USA, 2022; ISBN 9780991333295. [Google Scholar]
- Blaj, M.; Oancea, G. Fused deposition modelling process: A literature review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1009, 12006. [Google Scholar] [CrossRef]
- Hmeidat, N.S.; Pack, R.C.; Talley, S.J.; Moore, R.B.; Compton, B.G. Mechanical anisotropy in polymer composites produced by material extrusion additive manufacturing. Addit. Manuf. 2020, 34, 101385. [Google Scholar] [CrossRef]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Syrlybayev, D.; Zharylkassyn, B.; Seisekulova, A.; Akhmetov, M.; Perveen, A.; Talamona, D. Optimisation of Strength Properties of FDM Printed Parts—A Critical Review. Polymers 2021, 13, 1587. [Google Scholar] [CrossRef] [PubMed]
- Thumsorn, S.; Prasong, W.; Kurose, T.; Ishigami, A.; Kobayashi, Y.; Ito, H. Rheological Behavior and Dynamic Mechanical Properties for Interpretation of Layer Adhesion in FDM 3D Printing. Polymers 2022, 14, 2721. [Google Scholar] [CrossRef]
- Wach, R.A.; Wolszczak, P.; Adamus-Wlodarczyk, A. Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing. Macro Mater. Eng. 2018, 303, 1800169. [Google Scholar] [CrossRef]
- Mohamed, O.A.; Masood, S.H.; Bhowmik, J.L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53. [Google Scholar] [CrossRef]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Spoerk, M.; Gonzalez-Gutierrez, J.; Sapkota, J.; Schuschnigg, S.; Holzer, C. Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication. Plast. Rubber Compos. 2018, 47, 17–24. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Do, T.; Tran, P. FDM-Based 3D Printing of Polymer and Associated Composite: A Review on Mechanical Properties, Defects and Treatments. Polymers 2020, 12, 1529. [Google Scholar] [CrossRef]
- Shofner, M.L.; Lozano, K.; Rodríguez-Macías, F.J.; Barrera, E.V. Nanofiber-reinforced polymers prepared by fused deposition modeling. J. Appl. Polym. Sci. 2003, 89, 3081–3090. [Google Scholar] [CrossRef]
- Shofner, M.; Rodríguez-Macías, F.; Vaidyanathan, R.; Barrera, E. Single wall nanotube and vapor grown carbon fiber reinforced polymers processed by extrusion freeform fabrication. Compos. Part A Appl. Sci. Manuf. 2003, 34, 1207–1217. [Google Scholar] [CrossRef]
- van de Werken, N.; Tekinalp, H.; Khanbolouki, P.; Ozcan, S.; Williams, A.; Tehrani, M. Additively manufactured carbon fiber-reinforced composites: State of the art and perspective. Addit. Manuf. 2020, 31, 100962. [Google Scholar] [CrossRef]
- Goh, G.D.; Yap, Y.L.; Agarwala, S.; Yeong, W.Y. Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite. Adv. Mater. Technol. 2019, 4, 1800271. [Google Scholar] [CrossRef]
- Salih, R.M.; Kadauw, A.; Zeidler, H.; Aliyev, R. Investigation of LCD 3D Printing of Carbon Fiber Composites by Utilising Central Composite Design. JMMP 2023, 7, 58. [Google Scholar] [CrossRef]
- Safari, F.; Kami, A.; Abedini, V. 3D printing of continuous fiber reinforced composites: A review of the processing, pre- and post-processing effects on mechanical properties. Polym. Polym. Compos. 2022, 30, 09673911221098734. [Google Scholar] [CrossRef]
- Mashayekhi, F.; Bardon, J.; Berthé, V.; Perrin, H.; Westermann, S.; Addiego, F. Fused Filament Fabrication of Polymers and Continuous Fiber-Reinforced Polymer Composites: Advances in Structure Optimization and Health Monitoring. Polymers 2021, 13, 789. [Google Scholar] [CrossRef] [PubMed]
- Pandelidi, C.; Bateman, S.; Piegert, S.; Hoehner, R.; Kelbassa, I.; Brandt, M. The technology of continuous fibre-reinforced polymers: A review on extrusion additive manufacturing methods. Int. J. Adv. Manuf. Technol. 2021, 113, 3057–3077. [Google Scholar] [CrossRef]
- Justo, J.; Távara, L.; García-Guzmán, L.; París, F. Characterization of 3D printed long fibre reinforced composites. Compos. Struct. 2018, 185, 537–548. [Google Scholar] [CrossRef]
- Karimi, A.; Rahmatabadi, D.; Baghani, M. Various FDM Mechanisms Used in the Fabrication of Continuous-Fiber Reinforced Composites: A Review. Polymers 2024, 16, 831. [Google Scholar] [CrossRef]
- Shang, J.; Tian, X.; Luo, M.; Zhu, W.; Li, D.; Qin, Y.; Shan, Z. Controllable inter-line bonding performance and fracture patterns of continuous fiber reinforced composites by sinusoidal-path 3D printing. Compos. Sci. Technol. 2020, 192, 108096. [Google Scholar] [CrossRef]
- Omuro, R.; Ueda, M.; Matsuzaki, R.; Todoroki, A.; Hirano, Y. Three-dimensional printing of continuous carbon fiber reinforced thermoplastics by in-nozzle impregnation with compaction roller. In Proceedings of the 21st International Conference on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Struzziero, G.; Barbezat, M.; Skordos, A.A. Consolidation of continuous fibre reinforced composites in additive processes: A review. Addit. Manuf. 2021, 48, 102458. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Jiang, Q.; He, L.; Bismarck, A.; Hu, Q. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: A review. J. Mater. Sci. 2021, 56, 12999–13022. [Google Scholar] [CrossRef]
- Zhao, G.; Ma, G.; Feng, J.; Xiao, W. Nonplanar slicing and path generation methods for robotic additive manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 3149–3159. [Google Scholar] [CrossRef]
- Santana, P.B.; Gomes, H.M.; Almeida, F.S.; de Tita, V. A new approach to optimize variable axial composite shells: A metaheuristic procedure using the finite element method. Thin-Walled Struct. 2023, 183, 110389. [Google Scholar] [CrossRef]
- Chauvette, J.-F.; Hia, I.L.; Pierre, J.; Chenier, G.; Farahani, R.D.; Piccirelli, N.; Therriault, D. Non-Planar Multiprocess Additive Manufacturing of Multifunctional Composites. Adv. Mater. Technol. 2023, 8, 2300399. [Google Scholar] [CrossRef]
- Ding, S.; Zou, B.; Liu, Q.; Wang, X.; Liu, J.; Li, L. Non-planar additive manufacturing of pre-impregnated continuous fiber reinforced composites using a three-axis printer. J. Mater. Res. Technol. 2024, 32, 4410–4419. [Google Scholar] [CrossRef]
- Sun, H.; Li, F.; Shen, K.; Gong, Q. Energy absorption of variable stiffness composite thin-walled tubes on axial impacting. Compos. Part. C Open Access 2023, 12, 100386. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Y.; Chen, Z.; Xu, X.; Dong, K.; Xiong, Y. Robot-assisted conformal additive manufacturing for continuous fibre-reinforced grid-stiffened shell structures. Virtual Phys. Prototyp. 2023, 18, e2203695. [Google Scholar] [CrossRef]
- Hou, J.; Lu, L.; Yuan, S.; Zhai, R.; Hu, Y.; Wang, D.; Nie, X.; Li, F.; Xiao, H. In situ repairing of continuous fiber-reinforced thermoplastic composite via multi-axial additive manufacturing. Int. J. Adv. Manuf. Technol. 2024, 132, 853–872. [Google Scholar] [CrossRef]
- Crescenti, M. The continuous fibre injection process (CFIP): A novel approach to lightweight design of multi-material structural components. In Material Forming; Materials Research Forum LLC.: Millersville, PA, USA, 2024; pp. 1630–1639. [Google Scholar]
- Meißner, S.; Kafka, J.; Isermann, H.; Labisch, S.; Kesel, A.; Eberhardt, O.; Kuolt, H.; Scholz, S.; Kalisch, D.; Müller, S.; et al. Development and Evaluation of a Novel Method for Reinforcing Additively Manufactured Polymer Structures with Continuous Fiber Composites. J. Compos. Sci. 2024, 8, 272. [Google Scholar] [CrossRef]
- Meißner, S.; Scholz, S. Verfahren zur Herstellung von mit Fasern verstärkten Bauteilen aus Kunststoff. Patent DE102019204427 (B4), 28 December 2023. [Google Scholar]
- Schürmann, H. Konstruieren Mit Faser-Kunststoff-Verbunden: Mit 39 Tabellen, 2., Bearb. Und Erw. Aufl.; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-72189-5. [Google Scholar]
- ISO 527-5:2021; Plastics—Determination of Tensile Properties—Part 5: Test Conditions for Unidirectional Fibre-Reinforced Plastic Composites. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Adams, D.O.; Adams, D.F. Tabbing Guide for Composite Test Specimens. 2002. Available online: http://www.dtic.mil/docs/citations/ADA411472 (accessed on 28 January 2025).
- Anane-Fenin, K.; Akinlabi, E.T.; Perry, N. A Numerical And Statistical Approach For Optimization Of Tab Design For Non-Crimp Fabric Composites. Procedia Manuf. 2019, 35, 820–825. [Google Scholar] [CrossRef]
- Breish, F.; Hamm, C.; Andresen, S. Nature’s Load-Bearing Design Principles and Their Application in Engineering: A Review. Biomimetics 2024, 9, 545. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, H.; Li, X.; Yin, L.; Guo, X.; Fan, H.; Lei, H. Load-bearing capacity and failure mechanism of integrated fluted-core composite sandwich cylinders. Compos. Sci. Technol. 2022, 221, 109344. [Google Scholar] [CrossRef]
- Hou, Z.; Tian, X.; Zhang, J.; Zheng, Z.; Zhe, L.; Li, D.; Malakhov, A.V.; Polilov, A.N. Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites. Compos. Sci. Technol. 2021, 201, 108502. [Google Scholar] [CrossRef]
- Joustra, J.; Flipsen, B.; Balkenende, R. Structural reuse of high end composite products: A design case study on wind turbine blades. Resour. Conserv. Recycl. 2021, 167, 105393. [Google Scholar] [CrossRef]
- Tucci, F.; Esperto, V.; Pasquino, G.; Carlone, P. Injection Pultrusion of Glass-Reinforced Epoxy: Cure Kinetics, Rheology, and Force Analysis. Polymers 2024, 16, 1642. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, M.; Hattel, J.H.; Spangenberg, J. Flow-Induced Fibre Compaction in Resin-Injection Pultrusion. Transp. Porous. Med. 2023, 147, 541–571. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, X.D.; Durandet, Y.; Ruan, D. A review of the mechanical properties of additively manufactured fiber reinforced composites. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1067, 12105. [Google Scholar] [CrossRef]
- Fazlali, B.; Lomov, S.V.; Swolfs, Y. Reducing stress concentrations in static and fatigue tensile tests on unidirectional composite materials: A review. Compos. Part. B Eng. 2024, 273, 111215. [Google Scholar] [CrossRef]
- Kumar, R.; Mikkelsen, L.P.; Lilholt, H.; Madsen, B. Experimental Method for Tensile Testing of Unidirectional Carbon Fibre Composites Using Improved Specimen Type and Data Analysis. Materials 2021, 14, 3939. [Google Scholar] [CrossRef]
- Svidler, R.; Rinberg, R.; Mueller, S.; Kroll, L.; Kroll, M. Biaxial testing and failure criterion validation for flax fibre-reinforced plastics using a novel test method. Compos. Part B Eng. 2025, 306, 112802. [Google Scholar] [CrossRef]
- Lei, Z.; Luo, G.; Sun, W.; Dong, Y.; Tan, Z.; Wan, Y.; Yin, B. Exploring the Iosipescu method to investigate interlaminar shear fatigue behavior and failure mechanisms of carbon fiber reinforced composites. Int. J. Fatigue 2024, 178, 108020. [Google Scholar] [CrossRef]
- Nuhoglu, K.; Baltodano, N.M.; Celik, E. Investigation of Fiber-Matrix Interface Strength via Single-Fiber Pull-Out Test in 3D-Printed Thermoset Composites: A Simplified Methodology. Materials 2024, 17, 2433. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Cui, F.; Hameed, M.S.; Su, Y.; Zhang, J.; Feng, R.; Xu, J. Carbon fiber pull-out analysis for composite materials by considering interface properties. Compos. Interfaces 2024, 31, 1443–1457. [Google Scholar] [CrossRef]
Designation | Young’s Modulus [GPa] | Tensile Strength [MPa] | Source | ||
---|---|---|---|---|---|
AM basic structure ABS | 1.8 | 26 | [43] | ||
Continuous carbon fiber | 240 | 4300 | Data sheet Teijin | ||
Matrix EP | 3.3 | 75 | Data sheet Hexion |
No. | n | φcFRP | No. | n | φcFRP | No. | n | φcFRP |
---|---|---|---|---|---|---|---|---|
DS-1 | 36 | 36.3% | NA-1 | 22 | 22.2% | VN-1 | 16 | 16.1% |
DS-2 | 38 | 38.3% | NA-2 | 24 | 24.2% | VN-2 | 18 | 18.1% |
DS-3 | 40 | 40.3% | NA-3 | 26 | 26.2% | VN-3 | 20 | 20.1% |
DS-4 | 42 | 42.3% | NA-4 | 28 | 28.2% | VN-4 | 22 | 22.2% |
DS-5 | 44 | 44.3% | NA-5 | 30 | 30.2% | VN-5 | 24 | 24.2% |
Channel Cross-Section | Element Size | Number of Elements | Number of Nodes |
---|---|---|---|
DS | 0.33 | 490,334 | 2,175,609 |
NA | 0.33 | 680,772 | 3,010,066 |
VN | 1.00 | 34,652 | 138,102 |
0.50 | 251,716 | 1,006,632 | |
0.33 | 845,268 | 3,775,248 | |
0.25 | 1,894,216 | 8,248,954 | |
0.20 | 3,782,900 | 16,181,767 | |
0.17 | 6,438,600 | 27,253,772 |
No. | φcFRP | Ex,cFRP [GPa] | φeff | Ex,eff,analytical [GPa] |
---|---|---|---|---|
DS-1 | 36.3% | 89.1 | 17.4% | 43.7 |
DS-2 | 38.3% | 93.9 | 18.4% | 46.0 |
DS-3 | 40.3% | 98.6 | 19.3% | 48.3 |
DS-4 | 42.3% | 103.4 | 20.3% | 50.6 |
DS-5 | 44.3% | 108.2 | 21.3% | 52.9 |
NA-1 | 22.2% | 55.8 | 13.6% | 34.8 |
NA-2 | 24.2% | 60.5 | 14.8% | 37.7 |
NA-3 | 26.2% | 65.3 | 16.0% | 40.6 |
NA-4 | 28.2% | 70.1 | 17.3% | 43.6 |
NA-5 | 30.2% | 74.8 | 18.5% | 46.5 |
VN-1 | 16.1% | 41.5 | 8.4% | 22.6 |
VN-2 | 18.1% | 46.2 | 9.5% | 25.6 |
VN-3 | 20.1% | 51.0 | 10.5% | 27.6 |
VN-4 | 22.2% | 55.8 | 11.6% | 30.1 |
VN-5 | 24.2% | 60.5 | 12.7% | 32.5 |
No. | εx [–] | Ex,eff,num [GPa] | ∆Ex/Ex,eff, analytical |
---|---|---|---|
DS-1 | 2.46 × 10−3 | 43.7 | 0.00% |
DS-2 | 2.34 × 10−3 | 46.0 | 0.01% |
DS-3 | 2.23 × 10−3 | 48.3 | 0.00% |
DS-4 | 2.13 × 10−3 | 50.6 | 0.00% |
DS-5 | 2.03 × 10−3 | 52.9 | −0.01% |
NA-1 | 3.95 × 10−3 | 34.7 | −0.22% |
NA-2 | 3.64 × 10−3 | 37.6 | −0.22% |
NA-3 | 3.38 × 10−3 | 40.5 | −0.21% |
NA-4 | 3.15 × 10−3 | 43.5 | −0.22% |
NA-5 | 2.96 × 10−3 | 46.4 | −0.22% |
VN-1 | 5.23 × 10−3 | 22.6 | −0.58% |
VN-2 | 4.71 × 10−3 | 25.6 | −0.57% |
VN-3 | 4.28 × 10−3 | 27.6 | −0.56% |
VN-4 | 3.93 × 10−3 | 30.1 | −0.54% |
VN-5 | 3.62 × 10−3 | 32.5 | −0.53% |
No. | Fx,max [kN] | Ex,eff,exp [GPa] | ∆Ex [GPa] | ∆Ex/Ex,eff,analytical | εx,max [%] | σx,max [MPa] |
---|---|---|---|---|---|---|
DS-1 | 17.12 | 38.57 | 5.14 | 11.8% | 0.24 | 92.1 |
DS-2 | 16.80 | 37.80 | 8.20 | 17.8% | 0.24 | 90.3 |
DS-3 | 21.49 | 43.49 | 4.79 | 9.9% | 0.27 | 115.6 |
DS-4 | 19.66 | 49.90 | 0.68 | 1.3% | 0.21 | 105.7 |
DS-5 | 18.52 | 51.00 | 1.86 | 3.5% | 0.20 | 99.6 |
NA-1 | 20.22 | 27.91 | 6.89 | 19.8% | 0.50 | 138.8 |
NA-2 | 25.72 | 31.09 | 6.62 | 17.6% | 0.57 | 176.6 |
NA-3 | 16.55 | 39.61 | 1.01 | 2.5% | 0.29 | 113.7 |
NA-4 | 19.58 | 36.48 | 7.07 | 16.2% | 0.37 | 134.4 |
NA-5 | 19.29 | 43.27 | 3.19 | 6.9% | 0.31 | 132.5 |
VN-1 | 24.47 | 21.65 | 0.91 | 4.0% | 0.67 | 144.2 |
VN-2 | 23.29 | 20.54 | 4.51 | 18.0% | 0.67 | 137.2 |
VN-3 | 25.54 | 19.62 | 7.93 | 28.8% | 0.77 | 150.4 |
VN-4 | 26.06 | 27.39 | 2.66 | 8.9% | 0.56 | 153.5 |
VN-5 | 22.98 | 29.37 | 3.17 | 9.7% | 0.46 | 135.4 |
No. | τxz,max [MPa] | No. | τxz,max [MPa] | No. | τxz,max [MPa] |
---|---|---|---|---|---|
DS-1 | 25.5 | NA-1 | 17.6 | VN-1 | 16.1 |
DS-2 | 25.8 | NA-2 | 16.9 | VN-2 | 15.3 |
DS-3 | 26.1 | NA-3 | 16.3 | VN-3 | 14.6 |
DS-4 | 26.4 | NA-4 | 15.8 | VN-4 | 13.9 |
DS-5 | 26.6 | NA-5 | 15.3 | VN-5 | 13.4 |
No. | q [–] | No. | q [–] | No. | q [–] |
---|---|---|---|---|---|
DS-1 | 0.975 | NA-1 | 0.990 | VN-1 | 0.987 |
DS-2 | 0.969 | NA-2 | 0.990 | VN-2 | 0.987 |
DS-3 | 0.981 | NA-3 | 0.989 | VN-3 | 0.989 |
DS-4 | 0.972 | NA-4 | 0.992 | VN-4 | 0.988 |
DS-5 | 0.972 | NA-5 | 0.994 | VN-5 | 0.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meißner, S.; Kalisch, D.; Aliyev, R.; Scholz, S.; Zeidler, H.; Müller, S.; Spickenheuer, A.; Kroll, L. Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures. J. Compos. Sci. 2025, 9, 548. https://doi.org/10.3390/jcs9100548
Meißner S, Kalisch D, Aliyev R, Scholz S, Zeidler H, Müller S, Spickenheuer A, Kroll L. Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures. Journal of Composites Science. 2025; 9(10):548. https://doi.org/10.3390/jcs9100548
Chicago/Turabian StyleMeißner, Sven, Daniel Kalisch, Rezo Aliyev, Sebastian Scholz, Henning Zeidler, Sascha Müller, Axel Spickenheuer, and Lothar Kroll. 2025. "Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures" Journal of Composites Science 9, no. 10: 548. https://doi.org/10.3390/jcs9100548
APA StyleMeißner, S., Kalisch, D., Aliyev, R., Scholz, S., Zeidler, H., Müller, S., Spickenheuer, A., & Kroll, L. (2025). Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures. Journal of Composites Science, 9(10), 548. https://doi.org/10.3390/jcs9100548