Editorial for the Special Issue on Carbon Fiber Composites III
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Chen, J.; Ge, H.; Gao, Q.; Zhu, J.; Zhu, C.; Gao, C. Unique core-shell organogel/hydrogel fibers with tunable assembly structures for personal thermal management and human motion detection. Chem. Eng. J. 2025, 518, 164807. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, Y.; Yang, L.; Wu, S.; Tang, D.; Yan, C.; Shi, Y. Additive manufacturing of carbon fiber-reinforced composites: A review. Appl. Compos. Mater. 2024, 31, 353–398. [Google Scholar] [CrossRef]
- Zeng, H.; Gao, C.; Yu, Y.; Jiang, M.; Deng, T.; Zhu, J. Wet spinning enabled advanced PEDOT: PSS composite fibers for smart devices. Acc. Mater. Res. 2025, 6, 952–963. [Google Scholar] [CrossRef]
- Zhu, J.; Gao, Z.; Mao, Q.; Gao, Y.; Li, Y.; Zhang, X.; Gao, Q.; Jiang, M.; Lee, S.; van Duin, A.C.T. Advances in Developing Cost-Effective Carbon Fibers by Coupling Multiscale Modeling and Experiments: A Critical Review. Prog. Mater. Sci. 2024, 146, 101329. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Singh, S.; Sreenivasa, S.; Bains, P.S.; Sharma, R. Recent developments in the mechanical properties and recycling of fiber-reinforced polymer composites. Polym. Compos. 2025, 46, 3883–3908. [Google Scholar] [CrossRef]
- Zhu, J.; Li, G.; Kang, L. Editorial for the Special Issue on Carbon Fiber Composites. J. Compos. Sci. 2024, 8, 113. [Google Scholar] [CrossRef]
- Zhu, J. Editorial for the Special Issue on Carbon Fiber Composites, Volume II. J. Compos. Sci. 2024, 8, 307. [Google Scholar] [CrossRef]
- Wu, H.; Guo, A.; Kong, D.; Wu, J.; Qu, P.; Wang, S.; Guo, S.; Li, X.; Zhao, Z.; Liu, C.; et al. Preparation of Bouligand biomimetic ceramic composites and the effect of different fiber orientations on mechanical properties. J. Manuf. Process. 2024, 132, 789–801. [Google Scholar] [CrossRef]
- Almeida Jr, J.H.S.; Miettinen, A.; Léonard, F.; Falzon, B.G.; Withers, P.J. Microstructure and damage evolution in short carbon fibre 3D-printed composites during tensile straining. Compos. B: Eng. 2025, 292, 112073. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, B.; Niu, J.; Yang, C.; Sun, C.; Wang, L.; Li, D. High-strength carbon fiber-reinforced polyether-ether-ketone composites with longer fiber retention length manufactured via screw extrusion-based 3D printing. Addit. Manuf. 2024, 86, 104200. [Google Scholar] [CrossRef]
- Blythe, A.; Fox, B.; Nikzad, M. Stiffness retention in cyclic-loaded CFRP composites produced via novel automatic tape laying. J. Compos. Sci. 2024, 8, 92. [Google Scholar] [CrossRef]
- Zheng, R.; Pang, J.; Sun, J.; Su, Y.; Xu, G. Damage model of carbon-fiber-reinforced concrete based on energy conversion principle. J. Compos. Sci. 2024, 8, 71. [Google Scholar] [CrossRef]
- Tanaka, K.; Taniguchi, M. Effects of the Injection Material and Resin Layer on the Mechanical Properties of Carbon Fiber-Reinforced Thermoplastic (CFRTP) Press and Injection Hybrid Molded Parts. J. Compos. Sci. 2024, 8, 56. [Google Scholar] [CrossRef]
- Alhusain, M.; Al-Mayah, A. Innovative Wedge Anchorage for CFRP Plates: Development and Testing. J. Compos. Sci. 2024, 8, 103. [Google Scholar] [CrossRef]
- Li, L.; Song, Z.; Zhang, X.; Wang, F.; Song, P.; Jin, K.; Lee, T.; Quagliato, L. Influence of Grinding Tool Mesh Size and Rotational Speed on Post-Machining Quality of CFRP Laminates by Acceleration Signal and Surface Roughness Analyses. J. Compos. Sci. 2024, 8, 543. [Google Scholar] [CrossRef]
- El Mehtedi, M.; Buonadonna, P.; Loi, G.; El Mohtadi, R.; Carta, M.; Aymerich, F. Surface Quality Related to Face Milling Parameters in 3D Printed Carbon Fiber-Reinforced PETG. J. Compos. Sci. 2024, 8, 128. [Google Scholar] [CrossRef]
- Abdel-Mohsen, A.M.; Abdel-Rahman, R.M.; Kalina, L.; Vishakha, V.; Kaprálková, L.; Němeček, P.; Jančář, J.; Kelnar, I. Effect of chitin nanocrystal deacetylation on a nature-mimicking interface in carbon fiber composites. J. Compos. Sci. 2024, 8, 163. [Google Scholar] [CrossRef]
- Kocharla, R.P.B.; Bandlamudi, R.K.; Mirza, A.A.; Kolli, M.; Shanmugam, R.; Cheepu, M. Investigation on the Mechanical and Thermal Properties of Jute/Carbon Fiber Hybrid Composites with the Inclusion of Crab Shell Powder. J. Compos. Sci. 2024, 8, 296. [Google Scholar] [CrossRef]
- Liu, W.; Luo, Y.; Zhao, Y.; Zhou, H.; Ao, S.; Li, Y. Electrochemical Jet Machining of Surface Texture: Improving the Strength of Hot-Pressure-Welded AA6061-CF/PA66 Joints. J. Compos. Sci. 2024, 8, 263. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Yue, G.; Guo, B.; Wu, Y. Determination of the In-Plane Shear Behavior of and Process Influence on Uncured Unidirectional CF/Epoxy Prepreg Using Digital Image Correlation Analysis. J. Compos. Sci. 2024, 8, 133. [Google Scholar] [CrossRef]
- Akbarpour, A.; Volz, J.; Vemuganti, S. An Experimental study incorporating carbon fiber composite bars and wraps for concrete performance and failure insight. J. Compos. Sci. 2024, 8, 174. [Google Scholar] [CrossRef]
- Bianchi, I.; Forcellese, A.; Mancia, T.; Mignanelli, C.; Simoncini, M.; Verdini, T. Effect of Heat-Shrinkable Tape Application on the Mechanical Performance of CFRP Components Obtained by a Filament Winding Process. J. Compos. Sci. 2024, 8, 535. [Google Scholar] [CrossRef]
- Mandal, T.; Ozten, U.; Vaught, L.; Meyer, J.L.; Amiri, A.; Polycarpou, A.; Naraghi, M. Processing and Mechanics of Aromatic Vitrimeric Composites at Elevated Temperatures and Healing Performance. J. Compos. Sci. 2024, 8, 252. [Google Scholar] [CrossRef]
- Schäffer, S.; Reich, S.; Heunoske, D.; Lueck, M.; Wolfrum, J.; Osterholz, J. Laser-Induced Decomposition and Mechanical Degradation of Carbon Fiber-Reinforced Polymer Subjected to a High-Energy Laser with Continuous Wave Power up to 120 kW. J. Compos. Sci. 2024, 8, 471. [Google Scholar] [CrossRef]
- Han, H.; Dong, C. Buckling Analysis for Carbon and Glass Fibre Reinforced Hybrid Composite Stiffened Panels. J. Compos. Sci. 2024, 8, 34. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Giannini, G.; De Giosa, G.; Tucci, M.; Trentadue, B. A Finite Element Analysis Study of Influence of Femoral Stem Material in Stress Shielding in a Model of Uncemented Total Hip Arthroplasty: Ti-6Al-4V versus Carbon Fibre-Reinforced PEEK Composite. J. Compos. Sci. 2024, 8, 254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J. Editorial for the Special Issue on Carbon Fiber Composites III. J. Compos. Sci. 2025, 9, 544. https://doi.org/10.3390/jcs9100544
Zhu J. Editorial for the Special Issue on Carbon Fiber Composites III. Journal of Composites Science. 2025; 9(10):544. https://doi.org/10.3390/jcs9100544
Chicago/Turabian StyleZhu, Jiadeng. 2025. "Editorial for the Special Issue on Carbon Fiber Composites III" Journal of Composites Science 9, no. 10: 544. https://doi.org/10.3390/jcs9100544
APA StyleZhu, J. (2025). Editorial for the Special Issue on Carbon Fiber Composites III. Journal of Composites Science, 9(10), 544. https://doi.org/10.3390/jcs9100544