Electroless Nickel Phosphorus Coatings for Enhanced Solar Absorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Electroless Deposition Procedure
2.2. Sample Characterization
3. Results
3.1. Fundamental and Optical Characterization
3.1.1. Thickness (SEM Cross-Section)
3.1.2. SEM/EDS and Profilometric Analysis
3.1.3. XRD
3.1.4. Raman Spectroscopy
3.1.5. FTIR (Transmission Mode)
3.1.6. Reflectivity and Color Coordinates
3.1.7. Absorptance and Emissivity
3.2. Evaluation of Morphological and Optical Stability Under Aging Conditions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- NASA. Education Overview. Available online: https://Ceres.Larc.Nasa.Gov/News/Education-Overview/#additional-Energy-Budget-Resources (accessed on 18 December 2024).
- Tian, Y.; Zhao, C.Y. A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 2013, 104, 538–553. [Google Scholar] [CrossRef]
- Smil, V. General Energetics: Energy in the Biosphere and Civilization, 1st ed.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Zhao, J.; Lai, H.; Li, M. Anchoring 1T-MoS2 Petals on N-Doped Reduced Graphene Oxide for Exceptional Electromagnetic Wave Absorption. Int. J. Miner. Metall. Mater. 2025, 32, 619–630. [Google Scholar] [CrossRef]
- Hu, H.; Chen, F.; Li, Y.; Li, J.; Cui, L.; Jiang, D.; Lin, X.; Gao, J. Construction of Graphene Supported TiO2 Nanosheet Array/CdS/Ni2P Composite with Dual Heterojunctions for Boosting Photocatalytic Hydrogen Evolution. J. Alloys Compd. 2025, 1024, 180216. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Yang, H.; Yi, Z.; Zhang, H.; Tang, C.; Deng, J.; Wang, J.; Li, B. Photoelectric Simulation of Perovskite Solar Cells Based on Two Inverted Pyramid Structures. Phys. Lett. A 2025, 552, 130653. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, H.; Liu, M.; Zhang, W.; Li, X.; Cheng, S. Design of wide-angle broadband titanium-nitride solar absorber based on column-cavity structure. Phys. Lett. A 2025, 556, 130832. [Google Scholar] [CrossRef]
- FAO. Progress on the Level of Water Stress—Mid-Term Status of SDG Indicator 6.4.2 and Acceleration Needs, with Special Focus on Food Security; Food and Agriculture Organization (FAO): Rome, Italy, 2024; Available online: https://openknowledge.fao.org/handle/20.500.14283/cd2179en (accessed on 18 December 2024).
- IEA. World Energy Outlook 2024; IEA: Paris, France, 2024; Available online: https://www.iea.org/reports/world-energy-outlook-2024 (accessed on 18 December 2024).
- Alshukri, M.J.; Kadhim Hussein, A.; Eidan, A.A.; Alsabery, A.I. A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Sol. Energy 2022, 236, 417–433. [Google Scholar] [CrossRef]
- Suman, S.; Khan, M.K.; Pathak, M. Performance enhancement of solar collectors—A review. Renew. Sustain. Energy Rev. 2015, 49, 192–210. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Lizama-Tzec, F.I.; Macías, J.D.; Estrella-Gutiérrez, M.A.; Cahue-López, A.C.; Arés, O.; de Coss, R.; Alvarado-Gil, J.J.; Oskam, G. Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion. J. Mater. Sci. Mater. Electron. 2015, 26, 5553–5561. [Google Scholar] [CrossRef]
- Kadırgan, F. Electrochemical nano-coating processes in solar energy systems. Int. J. Photoenergy 2006, 2006, 084891. [Google Scholar] [CrossRef]
- Elsener, B.; Crobu, M.; Scorciapino, M.A.; Rossi, A. Electroless deposited Ni–P alloys: Corrosion resistance mechanism. J. Appl. Electrochem. 2008, 38, 1053–1060. [Google Scholar] [CrossRef]
- John, S.; Shanmugam, N.V.; Srinivasan, K.N.; Selvam, M.; Shenoi, B.A. Blackening of electroless nickel deposits for solar energy applications. Surf. Technol. 1983, 20, 331–338. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) Surface Engineering for Corrosion and Wear Resistance, 1st ed.; ASM International: Materials Park, OH, USA, 2001. [Google Scholar]
- Alghoul, M.A.; Sulaiman, M.Y.; Azmi, B.Z.; Wahab, M.A. Review of materials for solar thermal collectors. Anti-Corros. Methods Mater. 2005, 52, 199–206. [Google Scholar] [CrossRef]
- Katz, S.A.; Salem, H. The toxicology of chromium with respect to its chemical speciation: A review. J. Appl. Toxicol. 1993, 13, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Agarwala, R.C.; Agarwala, V.; Sharma, R. Electroless Ni-P Based Nanocoating Technology—A Review. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2006, 36, 493–515. [Google Scholar] [CrossRef]
- Krishnan, K.H.; John, S.; Srinivasan, K.N.; Praveen, J.; Ganesan, M.; Kavimani, P.M. An overall aspect of electroless Ni-P depositions—A review article. Metall. Mater. Trans. A 2006, 37, 1917–1926. [Google Scholar] [CrossRef]
- Sorahan, T.; Burges, D.C.; Hamilton, L.; Harrington, J.M. Lung cancer mortality in nickel/chromium platers, 1946–1995. Occup. Environ. Med. 1998, 55, 236–242. [Google Scholar] [CrossRef]
- Khollari, M.A.R.; Ghorbani, M.; Afshar, A. Fabrication and characterization of TiO2 deposited black electroless Ni-P solar absorber. Appl. Surf. Sci. 2019, 496, 143632. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, Y.; Zhang, Z. A study on the electrocodeposition processes and properties of Ni–SiC nanocomposite coatings. J. Coat. Technol. Res. 2011, 8, 409–417. [Google Scholar] [CrossRef]
- Wielage, B.; Lampke, T.; Zacher, M.; Dietrich, D. Electroplated Nickel Composites with Micron- to Nano-Sized Particles. Key Eng. Mater. 2008, 384, 283–309. [Google Scholar] [CrossRef]
- Garcia, I.; Fransaer, J.; Celis, J.-P. Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles. Surf. Coat. Technol. 2001, 148, 171–178. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, P.-F.; Zhou, J.; Miao, L.; Peng, Y.; Su, H.; Wang, P.; Wang, X.; Cao, W.; Jiang, F.; et al. A Novel Ink-Stained Paper for Solar Heavy Metal Treatment and Desalination. Sol. RRL 2018, 2, 1800073. [Google Scholar] [CrossRef]
- Liu, B.; Wang, C.; Bazri, S.; Badruddin, I.A.; Orooji, Y.; Saeidi, S.; Wongwises, S.; Mahian, O. Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technol. 2021, 377, 939–957. [Google Scholar] [CrossRef]
- Mallory, G.O.; Hajdu, J.B. (Eds.) Electroless Plating: Fundamentals and Applications, 3rd ed.; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Hu, C.-C.; Bai, A. Composition Control of Electroplated Nickel–Phosphorus Deposits. Surf. Coat. Technol. 2001, 137, 181–187. [Google Scholar] [CrossRef]
- Huang, G.-F.; Huang, W.-Q.; Wang, L.-L.; Zou, B.-S.; Chen, D.-P.; Li, D.-Y.; Wei, J.-M.; Zhang, J.-H. Effects of Complexing Agents on the Corrosion Resistance of Electroless Ni-Fe-P Alloys. Int. J. Electrochem. Sci. 2007, 2, 321–328. [Google Scholar] [CrossRef]
- Yan, W.; Tiejun, C.; Ruihong, Z. Electroless Deposition of NiMoP Coating on Q235B Steel and Its Corrosion Resistance in Simulated Concrete Pore Solution. Int. J. Electrochem. Sci. 2023, 18, 100313. [Google Scholar] [CrossRef]
- Nickel Institute. Nickel Plating Handbook; Nickel Institute: Toronto, ON, Canada, 2022. [Google Scholar]
- Devesa, S.; Cavaleiro, D.; Santo, D.; Gavinho, S.; Cunha, A.F.; Santos, P.; Carvalho, S. Boric Acid-Free Electrodeposition Process and Solar–Thermal Energy Conversion of and Ni-Carbon Black Nanocomposite Coatings. J. Mater. Res. 2024, 39, 3397–3410. [Google Scholar] [CrossRef]
- Devesa, S.; Santos, G.; Cavaleiro, D.; Lopes, M.; Ramos, A.S.; Carvalho, S. A Comprehensive Investigation of Boric Acid-Free Electrodeposition of Ni-P Alloy on Steel. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135678. [Google Scholar] [CrossRef]
- Devesa, S.; Benzarti, Z.; Santos, G.; Cavaleiro, D.; Cunha, A.; Santos, J.; Carvalho, S. Enhancing Solar Absorption with Double-Layered Nickel Coatings and WS2 Nanoparticles on Copper Substrates. Energies 2024, 17, 3869. [Google Scholar] [CrossRef]
- Nasirpouri, F. Electrodeposition of Nanostructured Materials, 1st ed.; Springer Series in Surface Sciences; Springer: Cham, Switzerland, 2016; Volume 66. [Google Scholar] [CrossRef]
- Low, C.T.J.; Wills, R.G.A.; Walsh, F.C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 2006, 201, 371–383. [Google Scholar] [CrossRef]
- Protsenko, V.S.; Danilov, F.I. Kinetic Model of Composite Coatings Electrodeposition Assuming Irreversible Adsorption of Dispersed Particles on a Growing Metal Substrate. J. Electroanal. Chem. 2022, 918, 116463. [Google Scholar] [CrossRef]
- Kollabathini, S.V.S.S.C.; Dora, S.P.; Chintada, S.; Arava, H. Influence of pH on the electroless Ni-P plating of SiC particles. Surf. Eng. 2025, 41, 217–226. [Google Scholar] [CrossRef]
- Tian, M.; Jian, Z.; Chang, F.; Hai, R. Properties of electroless thick nickel–phosphorus coating on SiCp/Al composite surface in acidic conditions. J. Mater. Sci. 2023, 58, 1886–1904. [Google Scholar] [CrossRef]
- Cotell, C.M.; Sprague, J.A.; Smidt, F.A., Jr. ASM Handbook, Volume 5: Surface Engineering; ASM International: Materials Park, OH, USA, 1994; ISBN 978-0-87170-384-2. [Google Scholar]
- Balaraju, J.N.; Narayanan, T.S.N.S.; Seshadri, S.K. Structure and phase transformation behaviour of electroless Ni–P composite coatings. Mater. Res. Bull. 2006, 41, 847–860. [Google Scholar] [CrossRef]
- Basinski, Z.S.; Hume-Rothery, W.; Sutton, A.L. The lattice expansion of iron. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1997, 229, 459–467. [Google Scholar] [CrossRef]
- Padmanathan, N.; Shao, H.; Razeeb, K.M. Multifunctional Nickel Phosphate Nano/Microflakes 3D Electrode for Electrochemical Energy Storage, Nonenzymatic Glucose, and Sweat pH Sensors. ACS Appl. Mater. Interfaces 2018, 10, 8599–8610. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, Y.; Yi, W.; Wang, H.; Liu, Z.; Yang, J.; Zhang, M. Sheeted NiCo Double Phosphate In Situ Grown on Nickel Foam Toward Bifunctional Water and Urea Oxidation. Electrocatalysis 2023, 14, 247–258. [Google Scholar] [CrossRef]
- Estrella-Gutiérrez, M.A.; Lizama-Tzec, F.I.; Arés-Muzio, O.; Oskam, G. Influence of a metallic nickel interlayer on the performance of solar absorber coatings based on black nickel electrodeposited onto copper. Electrochim. Acta 2016, 213, 460–468. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, R.; Zheng, Q.; Zhong, J.; Hao, W.; Yan, S.; Zou, Z. Nonredox trivalent nickel catalyzing nucleophilic electrooxidation of organics. Nat. Commun. 2023, 14, 7987. [Google Scholar] [CrossRef]
- Lo, Y.L.; Hwang, B.J. In Situ Raman Studies on Cathodically Deposited Nickel Hydroxide Films and Electroless Ni−P Electrodes in 1 M KOH Solution. Langmuir 1998, 14, 944–950. [Google Scholar] [CrossRef]
- Morikawa, T.; Nakade, T.; Yokoi, M.; Fukumoto, Y.; Iwakura, C. Electrodeposition of Ni-P alloys from Ni-citrate bath. Electrochim. Acta 1997, 42, 115–118. [Google Scholar] [CrossRef]
- Lelevic, A. Ni-P coatings electroplating-A review, Part I: Pure Ni-P alloy. arXiv 2018, arXiv:1807.04693. [Google Scholar]
- Daly, B.P.; Barry, F.J. Electrochemical nickel–phosphorus alloy formation. Int. Mater. Rev. 2003, 48, 326–338. [Google Scholar] [CrossRef]
- Ordine, A.P.; Díaz, S.L.; Margarit, I.C.P.; Barcia, O.E.; Mattos, O.R. Electrochemical study on Ni–P electrodeposition. Electrochem. Impedance Spectrosc. 2006, 51, 1480–1486. [Google Scholar] [CrossRef]
- Yang, J.; Solomatin, N.; Kraytsberg, A.; Ein-Eli, Y. In-Situ Spectro–electrochemical Insight Revealing Distinctive Silicon Anode Solid Electrolyte Interphase Formation in a Lithium–ion Battery. ChemistrySelect 2016, 1, 572–576. [Google Scholar] [CrossRef]
- Kumar, R.; Lang, S.; Englezos, P.; Ripmeester, J. Application of the ATR-IR Spectroscopic Technique to the Characterization of Hydrates Formed by CO2, CO2/H2 and CO2/H2/C3H8. J. Phys. Chem. A 2009, 113, 6308–6313. [Google Scholar] [CrossRef]
- Berkh, O.; Burstein, L.; Shacham-Diamand, Y.; Gileadi, E. The Chemical and Electrochemical Activity of Citrate on Pt Electrodes. J. Electrochem. Soc. 2011, 158, F85. [Google Scholar] [CrossRef]
- Zappielo, C.D.; Nanicuacua, D.M.; dos Santos, W.N.L.; da Silva, D.L.F.; Dall’ANtônia, L.H.; de Oliveira, F.M.; Clausen, D.N.; Tarley, C.R.T. Solid Phase Extraction to On-Line Preconcentrate Trace Cadmium Using Chemically Modified Nano-Carbon Black with 3-Mercaptopropyltrimethoxysilane. J. Braz. Chem. Soc. 2016, 27, 1715–1726. [Google Scholar] [CrossRef]
- Jaberi Mofrad, F.; Ostad Movahed, S.; Ahmadpour, A. Surface modification of commercial carbon black by silane coupling agents for improving dispersibility in rubber compounds. J. Appl. Polym. Sci. 2024, 141, e55155. [Google Scholar] [CrossRef]
- Ponte, F.; Sharma, P.; Figueiredo, N.M.; Ferreira, J.; Carvalho, S. Decorative Chromium Coatings on Polycarbonate Substrate for the Automotive Industry. Materials 2023, 16, 2315. [Google Scholar] [CrossRef]
- Carneiro, E.; Parreira, N.M.G.; Vuchkov, T.; Cavaleiro, A.; Ferreira, J.; Andritschky, M.; Carvalho, S. Cr-Based Sputtered Decorative Coatings for Automotive Industry. Materials 2021, 14, 5527. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Brewer, P.J.; Milton, M.J.T. The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces. J. Mater. Chem. 2002, 12, 2749–2754. [Google Scholar] [CrossRef]
- Kennedy, C.E. Review of Mid- to High-Temperature Solar Selective Absorber Materials; National Renewable Energy Lab (NREL): Golden, CO, USA, 2002. [Google Scholar]
- ISO 9845-1:2022; Solar Energy—Reference Solar Spectral Irradiance at the Ground at Different Receiving Conditions—Part 1: Direct Normal and Hemispherical Solar Irradiance for Air Mass 1.5. ISO: Geneva, Switzerland, 2022.
- Ienei, E.; Milea, A.C.; Duta, A. Influence of Spray Pyrolysis Deposition Parameters on the Optical Properties of Porous Alumina Films. Energy Procedia 2014, 48, 97–104. [Google Scholar] [CrossRef]
- Winowlin Jappes, J.T.; Brintha, N.C.; Adam Khan, M. Influence of Heat Treatment over Electroless Crystallinity of Electroless Nickel Deposition. Mater. Today Proc. 2021, 46, 7230–7235. [Google Scholar] [CrossRef]
- Buchtík, M.; Doskočil, L.; Brescher, R.; Doležal, P.; Másilko, J.; Wasserbauer, J. The Effect of Crystallization and Phase Transformation on the Mechanical and Electrochemical Corrosion Properties of Ni-P Coatings. Coatings 2021, 11, 447. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, Y.; Zhang, H.; Zou, Z. Effect of Low-Temperature Annealing on The Properties of Ni-P Amorphous Alloys Deposited Via Electroless Plating. Arch. Metall. Mater. 2015, 60, 865–869. [Google Scholar] [CrossRef]
- Duncan, R. The metallurgical structure of electroless nickel deposits: Effect on coating properties. Plat. Surf. Finish. 1996, 83, 65–69. [Google Scholar]
- Karthikeyan, S.; Vijayaraghavan, L. Investigation of the surface properties of heat treated electroless Ni–P coating. Trans. IMF 2016, 94, 265–273. [Google Scholar] [CrossRef]
- Buchtík, M.; Krystýnová, M.; Másilko, J.; Wasserbauer, J. The Effect of Heat Treatment on Properties of Ni–P Coatings Deposited on a AZ91 Magnesium Alloy. Coatings 2019, 9, 461. [Google Scholar] [CrossRef]
- Ashassi-Sorkhabi, H.; Rafizadeh, S.H. Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits. Surf. Coat. Technol. 2004, 176, 318–326. [Google Scholar] [CrossRef]
- Sampath Kumar, P.; Kesavan Nair, P. Studies on crystallization of electroless Ni–P deposits. Int. Conf. Adv. Mater. Process. Technol. 1996, 56, 511–520. [Google Scholar] [CrossRef]
- Bagheri, M.; Ashrafizadeh, F.; Najafabadi, M.H. Black Nickel Coating and Color Anodized Layers for Solar Absorber. Trans. Indian Inst. Met. 2014, 67, 927–934. [Google Scholar] [CrossRef]
- Ashrafizadeh, F.; Bagheri, M.; Hosseini, M. A comparative study on optical properties of black nickel coatings and color anodizing for solar absorber. In Optical Interference Coatings; Tilsch, M., Driggers, R., Eds.; Optica Publishing Group: Whistler, BC, Canada, 2013; p. MC.3. [Google Scholar]
- Azli, N.N.A.; Mohd Amin, N.F.; Oluhende, S.T.; Mohamad, S.N.A.; Fadil, N.A. Electroless deposited black nickel-phosphorous solar absorber coatings on carbon steel: Effect of plating bath pH. Mater. Today Proc. 2021, 39, 1071–1076. [Google Scholar] [CrossRef]
- Papini, M.; Papini, F. Study and realization of a selective absorber Ni-P compound for the photothermal conversion of solar radiation. Thin Solid Film. 1984, 115, 1–11. [Google Scholar] [CrossRef]
Reagents | Composition (g/L) | Deposition Parameters | Samples | ||
NiSO4·6H2O | 262.9 | C0 | C1 | C1-CB | |
NiCl2·6H2O | 47.5 | pH | 1.68–1.78 | 2.66–2.76 | |
H3BO3 | 30.9 | T (°C) | 50 | ||
H3PO3 | 82.0 | t (min) | 20 | ||
C6H5Na3O7 | 129.0 | ω (rpm) | 200 | ||
CB nanoparticles | 1.3 1 |
Sample | Brightness (L*) |
---|---|
C0 | 36.0 ± 4.6% |
C1 | 29.0 ± 1.4% |
C1-CB | 30.8 ± 8.6% |
Sample | Figure of Merit α − ε |
---|---|
C0 | 0.81 |
C1 | 0.84 |
C1-CB | 0.83 |
Figure of Merit α − ε | ||
---|---|---|
Sample | As Deposited | After Aging |
C0 | 0.81 | 0.75 |
C1 | 0.84 | 0.81 |
C1-CB | 0.83 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, G.; Cavaleiro, D.; Gavinho, S.; Benzarti, Z.; Lopes, M.; Cunha, A.; Carvalho, S.; Devesa, S. Electroless Nickel Phosphorus Coatings for Enhanced Solar Absorption. J. Compos. Sci. 2025, 9, 535. https://doi.org/10.3390/jcs9100535
Santos G, Cavaleiro D, Gavinho S, Benzarti Z, Lopes M, Cunha A, Carvalho S, Devesa S. Electroless Nickel Phosphorus Coatings for Enhanced Solar Absorption. Journal of Composites Science. 2025; 9(10):535. https://doi.org/10.3390/jcs9100535
Chicago/Turabian StyleSantos, Gabriel, Diogo Cavaleiro, Sílvia Gavinho, Zohra Benzarti, Mariana Lopes, António Cunha, Sandra Carvalho, and Susana Devesa. 2025. "Electroless Nickel Phosphorus Coatings for Enhanced Solar Absorption" Journal of Composites Science 9, no. 10: 535. https://doi.org/10.3390/jcs9100535
APA StyleSantos, G., Cavaleiro, D., Gavinho, S., Benzarti, Z., Lopes, M., Cunha, A., Carvalho, S., & Devesa, S. (2025). Electroless Nickel Phosphorus Coatings for Enhanced Solar Absorption. Journal of Composites Science, 9(10), 535. https://doi.org/10.3390/jcs9100535