The Influence of Different Solvents on the Physical Properties of ZnO Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. RBS Results
3.2. Structural Properties
3.3. Optical Properties
3.4. Morphological Properties
3.5. Electrical Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez, M.A.; Herrero, J.; Gutiérrez, M.T. Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells. Sol. Energy Mater. Sol. Cells 1997, 45, 75–86. [Google Scholar] [CrossRef]
- Purica, M.; Budianu, E.; Rusu, E. Heterojunction with ZnO polycrystalline thin films for optoelectronic devices applications. Microelectron. Eng. 2000, 51, 425–431. [Google Scholar] [CrossRef]
- Abbas, H.F.; Ismail, R.A.; K.hamoudi, W. Fabrication of High-Performance ZnO Nanostructure/Si Photodetector by Laser Ablation. Silicon 2024, 16, 1543–1557. [Google Scholar]
- Özgür, Ü.; Avrutin, V.; Morkoç, H. Chapter 16—Zinc Oxide Materials and Devices Grown by Molecular Beam Epitaxy. In Molecular Beam Epitaxy, 2nd ed.; Henini, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 343–375. [Google Scholar]
- Deng, Z.; Tian, Y.; Yin, X.; Rui, Q.; Liu, H.; Luo, Y. Physical vapor deposited zinc oxide nanoparticles for direct electron transfer of superoxide dismutase. Electrochem. Commun. 2008, 10, 818–820. [Google Scholar] [CrossRef]
- Dang, W.L.; Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Milne, W.I. Deposition and characterization of sputtered ZnO films. Superlattices Microstruct. 2007, 42, 89–93. [Google Scholar] [CrossRef]
- Chen, F.; Ye, Z.; Xu, W.; Zhao, B.; Zhu, L.; Lv, J. Fabrication of p-type ZnO thin films via MOCVD method by using phosphorous as dopant source. J. Cryst. Growth 2005, 281, 458–462. [Google Scholar] [CrossRef]
- Groenen, R.; Loffler, J.; Sommeling, P.M.; Linden, J.L.; Hamers, E.A.G.; Schropp, R.E.I.; van de Sanden, M.C.M. Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD. Thin Solid Films 2001, 392, 226–230. [Google Scholar] [CrossRef]
- Lujala, V.; Skarp, J.; Tammenmaa, M.; Suntola, T. Atomic layer epitaxy growth of doped zinc oxide thin films from organometals. Appl. Surf. Sci. 1994, 82, 34–40. [Google Scholar] [CrossRef]
- Pal, B.; Sharon, M. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process. Mater. Chem. Phys. 2002, 76, 82–87. [Google Scholar] [CrossRef]
- Rao, T.P.; Santhoshkumar, M.C. Highly oriented (100) ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 2009, 255, 7212–7215. [Google Scholar]
- Godbole, B.; Badera, N.; Shrivastava, S.; Jain, D.; Ganesan, V. Growth Mechanism of ZnO Films Deposited by Spray Pyrolysis Technique. Mater. Sci. Appl. 2011, 2, 643–648. [Google Scholar] [CrossRef]
- Hafdallah, A.; Ferdi, A.; Aida, M.S.; Attaf, N.; Amara, A. Effect of substrate temperature studies on spray pyrolysis deposited ZnO thin films. Int. J. Adv. Res. 2015, 3, 240–246. [Google Scholar]
- Saleem, A.; Zhang, Y.; Usman, M.; Haris, M.; Li, P. Tailored architectures of mesoporous carbon nanostructures: From synthesis to applications. Nano Today 2022, 46, 101607. [Google Scholar] [CrossRef]
- Vimalkumar, T.V.; Poornima, N.; Kartha, C.S.; Vijayakumar, K.P. Effect of precursor medium on structural, electrical and optical properties of sprayed polycrystalline ZnO thin films. Mater. Sci. Eng. B 2010, 175, 29–35. [Google Scholar] [CrossRef]
- Mayer, M. SIMNRA User’s Guide, Version 6.04; Max Planck-Institute für Plasmaphysik: Garching, Germany, 1997. [Google Scholar]
- Tesmer, J.R.; Nastasi, M. (Eds.) Handbook of Modern Ion Beam Materials Analysis; Materials Research Society: Pittsburg, PA, USA, 1995. [Google Scholar]
- Chu, W.K.; Mayer, J.W.; Nicolet, M.-A. (Eds.) Backscattering Spectrometry; Academic Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Mahajan, C.M.; Pendharkar, M.; Chaudhari, Y.A.; Sawant, S.S.; Ankamwar, B.; Takwale, M.G. Spray Deposited Nanocrystalline ZnO Transparent Electrodes: Role of Precursor Solvent. J. Nano-Electron. Phys. 2016, 8, 02026. [Google Scholar] [CrossRef]
- Foo, K.L.; Kashif, M.; Hashim, U.; Liu, W.-W. Effect of different solvents on the structural and optical properties of zinc oxide thin films for optoelectronic applications. Ceram. Int. 2024, 40, 753–761. [Google Scholar] [CrossRef]
- Yang, J.; Wei, B.; Li, X.; Wang, J.; Zhai, H.; Li, X.; Sui, Y.; Liu, Y.; Wang, J.; Lang, J.; et al. Synthesis of ZnO films in different solvents and their photocatalytic activities. Cryst. Res. Technol. 2015, 50, 840–845. [Google Scholar] [CrossRef]
- Powder Diffraction File 36-1451 for Hexagonal ZnO, JCPDS-International Center for Diffraction Data. Available online: https://www.icdd.com/ (accessed on 1 July 2024).
- Zaier, A.; El az, F.O.; Lakfif, F.; Kabir, A.; Boudjadar, S.; Aida, M.S. Effects of the substrate temperature and solution molarity on the structural opto-electric properties of ZnO thin films deposited by spray pyrolysis. Mater. Sci. Semicond. Process. 2009, 12, 207–211. [Google Scholar] [CrossRef]
- Potter, D.B.; Parkin, I.P.; Carmalt, C.J. The effect of solvent on Al-doped ZnO thin films deposited via aerosol-assisted CVD. RSC Adv. 2018, 8, 33164. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1978. [Google Scholar]
- Klung, H.P.; Alexander, L.E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Hamidi, A.E.; Elmahboub, E.; Hichou, A.E.; Almaggoussi, A. Investigation of solvent effect on the structural morphological and optical properties of ZnO doped Mg elaborated by sol-gel method. Res. Rev. J. Mater. Sci. 2022, 10, 17–23. [Google Scholar]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solid B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Benramache, S.; Rahal, A.; Benhaoua, B. The effects of solvent nature on spray-deposited ZnO thin film prepared from Zn (CH3COO)2, 2H2O. Optik 2014, 125, 663–666. [Google Scholar] [CrossRef]
- Wang, W.N.; Purwanto, A.; Lenggoro, I.W.; Okuyama, K.; Chang, H.; Jang, H.D. Investigation on the Correlations between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis. Ind. Eng. Chem. Res. 2008, 47, 1650–1659. [Google Scholar] [CrossRef]
- Rao, T.P.; Santhoshkumar, M.C. Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Appl. Surf. Sci. 2009, 255, 4579–4584. [Google Scholar]
- Wen, R.; Wang, L.; Wang, X.; Yue, G.-H.; Chen, Y.; Peng, D.-L. Influence of substrate temperature on mechanical, optical and electrical properties of ZnO: Al films. J. Alloys Compd. 2010, 508, 370–374. [Google Scholar] [CrossRef]
- Zahedi, F.; Dariani, R.S.; Rozati, S.M. Optical and Electrical Properties of ZnO Thin Films Prepared by Spray Pyrolysis: Effect of Precursor Concentration. Bull Mater. Sci. 2014, 37, 433–439. [Google Scholar] [CrossRef]
- Muruganantham, G.; Ravichandran, K.; Saravanakumar, K.; Ravichandran, A.T.; Sakthivel, B. Effect of solvent volume on the physical properties of undoped and fluorine-doped tin oxide films deposited using a low-cost spray technique. Superlattices Microstruct. 2011, 50, 722–733. [Google Scholar] [CrossRef]
- Sivalingam, D.; Gopalakrishnan, J.B.; Balaguru Rayappan, J.B. Influence of precursor concentration on structural, morphological and electrical properties of spray deposited ZnO thin films. Cryst. Res. Technol. 2011, 46, 685–690. [Google Scholar] [CrossRef]
Substrate Temperature (°C) | a (nm) Ethanol | c (nm) Ethanol | c/a Ethanol | a (nm) Methanol | c (nm) Methanol | c/a Methanol |
---|---|---|---|---|---|---|
400 | 0.3365 | 0.5444 | 1.6178 | 0.3365 | 0.5197 | 1.5444 |
450 | 0.3375 | 0.5444 | 1.6130 | 0.3365 | 0.5425 | 1.6121 |
500 | 0.3365 | 0.5431 | 1.6139 | 0.3365 | 0.5431 | 1.6139 |
Substrate Temperature (°C) | Average Size of the Crystallite Prepared with Ethanol (nm) | Average Size of the Crystallite Prepared with Methanol (nm) |
---|---|---|
400 | 36.52 | 29.16 |
450 | 31.21 | 29.98 |
500 | 35.45 | 34.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Suárez, A.; Acosta, D.R. The Influence of Different Solvents on the Physical Properties of ZnO Thin Films. J. Compos. Sci. 2024, 8, 332. https://doi.org/10.3390/jcs8080332
López-Suárez A, Acosta DR. The Influence of Different Solvents on the Physical Properties of ZnO Thin Films. Journal of Composites Science. 2024; 8(8):332. https://doi.org/10.3390/jcs8080332
Chicago/Turabian StyleLópez-Suárez, Alejandra, and Dwight R. Acosta. 2024. "The Influence of Different Solvents on the Physical Properties of ZnO Thin Films" Journal of Composites Science 8, no. 8: 332. https://doi.org/10.3390/jcs8080332
APA StyleLópez-Suárez, A., & Acosta, D. R. (2024). The Influence of Different Solvents on the Physical Properties of ZnO Thin Films. Journal of Composites Science, 8(8), 332. https://doi.org/10.3390/jcs8080332