PEBAX® 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanchez, D. Advanced Extrusion Techniques: How Engineered Extrusion Helps Medical Device Makers Improve Device Designs and Patient Experiences. Med. Des. Briefs 2021, 1, 6–9. [Google Scholar]
- Yin, J.; Luan, S. Opportunities and challenges for the development of polymer-based biomaterials and medical devices. Regen. Biomater. 2016, 3, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Toh, H.W.; Toong, D.W.Y.; Ng, J.C.K.; Ow, V.; Lu, S.; Tan, L.P.; Wong, P.E.H.; Venkatraman, S.; Huang, Y.; Ang, H.Y. Polymer blends and polymer composites for cardiovascular implants. Eur. Polym. J. 2021, 146, 110249. [Google Scholar] [CrossRef]
- Touris, A.; Turcios, A.; Mintz, E.; Pulugurtha, S.R.; Thor, P.; Jolly, M.; Jalgaonkar, U. Effect of molecular weight and hydration on the tensile properties of polyamide 12. Results Mater. 2020, 8, 100149. [Google Scholar] [CrossRef]
- Lewis, P.R. Manufacturing defects in polymeric medical devices. In Durability and Reliability of Medical Polymers; Woodhead Publishing: Cambridge, UK, 2012; pp. 225–268. [Google Scholar] [CrossRef]
- Megaly, M.; Morcos, R.; Kucharik, M.; Tawadros, M.; Basir, M.B.; Pershad, A.; Maini, B.; Khalili, H.; Alaswad, K.; Brilakis, E.S. Complications and Failure Modes of Polymer-Jacketed Guidewires; Insights from the MAUDE Database. Cardiovasc. Revascularization Med. 2022, 36, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Ram, M. Hoja Técnica Estearato de Calcio. 2022. Available online: https://mineralesram.com/wp-content/uploads/2020/11/HOJA-TE%cc%81CNICA-ESTEARATO-DE-CALCIO-.pdf (accessed on 6 December 2023).
- Silva, L.; Ricardo, J.; Macedo, N. Evaluation of the Enzymatic Degradation of PLA and Their Compounds with Thermoplastic Starch. 2014. Available online: https://www.researchgate.net/publication/312503004 (accessed on 28 December 2023).
- Salahshoori, I.; Jorabchi, M.N.; Valizadeh, K.; Yazdanbakhsh, A.; Bateni, A.; Wohlrab, S. A deep insight of solubility behavior, mechanical quantum, thermodynamic, and mechanical properties of Pebax-1657 polymer blends with various types of vinyl polymers: A mechanical quantum and molecular dynamics simulation study. J. Mol. Liq. 2022, 363, 119793. [Google Scholar] [CrossRef]
- Jamarun, N.; Amelia, D.; Rahmayeni; Septiani, U.; Sisca, V. The effect of temperature on the synthesis and characterization of hydroxyapatite-polyethylene glycol composites by in-situ process. Hybrid Adv. 2023, 2, 100031. [Google Scholar] [CrossRef]
- Mikhailova, O.; Rovnaník, P. Effect of Polyethylene Glycol Addition on Metakaolin-based Geopolymer. In Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; pp. 222–228. [Google Scholar] [CrossRef]
- Li, F.J.; Liang, J.Z.; Zhang, S.D.; Zhu, B. Tensile Properties of Polylactide/Poly(ethylene glycol) Blends. J. Polym. Environ. 2015, 23, 407–415. [Google Scholar] [CrossRef]
- Athanasoulia, I.-G.; Tarantili, P.A. Preparation and characterization of polyethylene glycol/poly(L-lactic acid) blends. Pure Appl. Chem. 2017, 89, 141–152. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Balaji, K.V.; Yadav, R.; Zabihi, O.; Ahmadi, M.; Adetunji, P.; Naebe, M. Balancing the toughness and strength in polypropylene composites. Compos. B Eng. 2021, 223, 109121. [Google Scholar] [CrossRef]
- Tso, C.Y.; Chao, C.Y.H. Activated carbon, silica-gel and calcium chloride composite adsorbents for energy efficient solar adsorption cooling and dehumidification systems. Int. J. Refrig. 2012, 35, 1626–1638. [Google Scholar] [CrossRef]
- Garofalo, E.; Scarfato, P.; Di Maio, L.; Protopapa, A.; Incarnato, L. Zeolites as effective desiccants to solve hygroscopicity issue of post-consumer mixed recycled polyolefins. J. Clean. Prod. 2021, 295, 126379. [Google Scholar] [CrossRef]
- Yang, I.-K.; Tsai, P.-H. Rheology and structure change of poly(ether-block-amide) segmented block copolymer. J. Cent. South Univ. Technol. 2007, 14, 146–150. [Google Scholar] [CrossRef]
- ASTM D3850; Standard Test Method for Rapid Thermal Degradation of Solid Electrical Insulating Materials by Thermogravimetric Method (TGA); Volume 10.02, Book of Standards. ASTM International: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d3850-19.html (accessed on 19 January 2024).
- ASTM D792; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement; Volume 08.01, Book of Standards. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d0792-20.html (accessed on 13 December 2023).
- ASTM D3418; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry; Volume 08.02, Book of Standards. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/d3418-21.html (accessed on 19 January 2024).
- ASTM D638; Standard Test Method for Tensile Properties of Plastics; Volume 08.01, Book of Standards. ASTM International: West Conshohocken, PA, USA, 2022. Available online: https://www.astm.org/d0638-22.html (accessed on 19 January 2024).
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; Volume 08.01, Book of Standards. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d0790-17.html (accessed on 19 January 2024).
- Haudin, J.-M.; Chenot, J.-L. Numerical and Physical Modeling of Polymer Crystallization. Int. Polym. Process. 2004, 19, 267–274. [Google Scholar] [CrossRef]
- Palacios, J.K.; Michell, R.M.; Müller, A.J. Crystallization, morphology and self-assembly of double, triple and tetra crystalline block polymers. Polym. Testing 2023, 121, 107995. [Google Scholar] [CrossRef]
- Lemanowicz, M.; Mielańczyk, A.; Walica, T.; Kotek, M.; Gierczycki, A. Application of Polymers as a Tool in Crystallization—A Review. Polymers 2021, 13, 2695. [Google Scholar] [CrossRef]
- Sadeghi, F.; Le, D. Characterization of polymeric biomedical balloon: Physical and mechanical properties. J. Polym. Eng. 2021, 41, 799–807. [Google Scholar] [CrossRef]
- Tien, N.-D.; Prud’homme, R.E. Crystallization Behavior of Semicrystalline Immiscible Polymer Blends. In Crystallization in Multiphase Polymer Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 181–212. [Google Scholar] [CrossRef]
- Bertolla, M.; Cecchetto, M.; Comotto, M.; Moro, A.D. Comparison of the Properties of a Random Copolymer and a Molten Blend PA6/PA6.9. Polymers 2022, 14, 4115. [Google Scholar] [CrossRef] [PubMed]
- Thanakkasaranee, S.; Kim, D.; Seo, J. Preparation and Characterization of Poly(ether-block-amide)/Polyethylene Glycol Composite Films with Temperature-Dependent Permeation. Polymers 2018, 10, 225. [Google Scholar] [CrossRef]
- Amstutz, C.; Weisse, B.; Valet, S.; Haeberlin, A.; Burger, J.; Zurbuchen, A. Temperature-dependent tensile properties of polyamide 12 for the use in percutaneous transluminal coronary angioplasty balloon catheters. BioMed. Eng. Online 2021, 20, 110. [Google Scholar] [CrossRef]
- Peng, J.; Snyder, G.J. A figure of merit for flexibility. Science 2019, 366, 690–691. [Google Scholar] [CrossRef] [PubMed]
- Arkema, G.M. Improvements in local mechanical property measurements of polymers. Plast. Res. Online 2010. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Wang, J.-W.; Wang, H.-Q.; Zhuang, G.-C.; Yang, J.-B.; Ma, Y.-J.; Zhang, Y.; Ren, H. Effects of a new compatibilizer on the mechanical properties of TPU/PEBA blends. Eur. Polym. J. 2022, 175, 111358. [Google Scholar] [CrossRef]
- Yu, T.; Luo, F.; Zhao, Y.; Wang, D.; Wang, F. Improving the processability of biodegradable polymer by stearate additive. J. Appl. Polym. Sci. 2011, 120, 692–700. [Google Scholar] [CrossRef]
- Laboulfie, F.; Hémati, M.; Lamure, A.; Diguet, S. Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technol. 2013, 238, 14–19. [Google Scholar] [CrossRef]
- Jeong, S. Investigation of intrinsic characteristics of polymer blends via molecular simulation: A review. Korea Aust. Rheol. J. 2023, 35, 249–266. [Google Scholar] [CrossRef]
- Paszkiewicz, S.; Walkowiak, K.; Irska, I.; Zubkiewicz, A.; Figiel, P.; Gorący, K.; El Fray, M. Furan-based copoly(ester-ethers) and copoly(ester-amide-ethers). Comparison study on the phase structure, mechanical and thermal properties. Polymer 2023, 269, 125740. [Google Scholar] [CrossRef]
- Roland, C.M.; Casalini, R. The role of density and temperature in the dynamics of polymer blends. Macromolecules 2005, 38, 8729–8733. [Google Scholar] [CrossRef]
- Kim, M.; Kang, S.W. PEBAX-1657/Ag nanoparticles/7,7,8,8-tetracyanoquinodimethane complex for highly permeable composite membranes with long-term stability. Sci. Rep. 2019, 9, 4266. [Google Scholar] [CrossRef]
- Umar, M.; Ofem, M.I.; Anwar, A.S.; Salisu, A.G. Thermo gravimetric analysis (TGA) of PA6/G and PA6/GNP composites using two processing streams. J. King Saud Univ.—Eng. Sci. 2022, 34, 77–87. [Google Scholar] [CrossRef]
- Zhao, D.; Ren, J.; Wang, Y.; Qiu, Y.; Li, H.; Hua, K.; Li, X.; Ji, J.; Deng, M. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes. J. Memb. Sci. 2017, 521, 104–113. [Google Scholar] [CrossRef]
Ref. Run | Formula | A (%) | B (%) | C (%) | D (%) | E (%) |
---|---|---|---|---|---|---|
P1 | 4 | 89.17 | 7.50 | 2.50 | 0.63 | 0.21 |
P2 | 5 | 89.29 | 10.00 | 0.00 | 0.50 | 0.21 |
P3 | 11 | 88.79 | 0.00 | 10.00 | 1.00 | 0.21 |
P4 | 16 | 79.79 | 10.00 | 10.00 | 0.00 | 0.21 |
P5 | 15 | 99.29 | 0.00 | 0.00 | 0.50 | 0.21 |
P6 | 3 | 98.79 | 0.00 | 0.00 | 1.00 | 0.21 |
P7 | 7 | 93.92 | 2.50 | 2.50 | 0.88 | 0.21 |
Std | 18 | 100.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ref. Run | Crystallinity Temperature (°C) ± 0.025 Accuracy | Tm (°C) ± 0.025 Accuracy | Ultimate Tensile Strength (MPa) | Elastic Modulus (MPa) | Elastic Limit (MPa) | Flexural Strength (MPa) | Density @ 23 °C (g/cm3) | Moisture Content (%) |
---|---|---|---|---|---|---|---|---|
P1 | 91.010 | 155.150 | 23.20 | 141.71 | 11.92 | 8.14 ± 0.40 | 1.0153 | 0.186 |
P2 | 92.670 | 155.520 | 26.10 | 173.16 | 11.11 | 10.67 ± 0.07 | 1.0057 | 0.339 |
P3 | 76.670 | 154.160 | 12.90 | 131.72 | 4.69 | 10.74 ± 0.22 | 1.0017 | 0.279 |
P4 | 96.060 | 157.280 | 19.80 | 145.38 | 11.36 | 9.69 ± 0.24 | 1.0223 | 0.262 |
P5 | 94.740 | 158.010 | 24.20 | 133.16 | 13.15 | 7.56 ± 0.18 | 1.0147 | 0.276 |
P6 | 90.510 | 154.790 | 23.60 | 139.26 | 12.71 | 7.32 ± 0.06 | 1.0157 | 0.272 |
P7 | 93.720 | 154.730 | 21.70 | 145.02 | 13.47 | 7.83 ± 0.16 | 1.0120 | 0.147 |
Std (Pebax) | 100.82 | 157.13 | 22.00 | 149.12 | 5.55 | 9.14 ± 0.29 | 1.0057 | 0.351 |
Response Variable | R-Squared | Pebax Coefficient | PP Coefficient | PEG Coefficient | EC Coefficient | ANOVA p-Value |
---|---|---|---|---|---|---|
UTS | 93.19% | 23.2748 | 63.5181 | −62.8362 | −40.119 | 0.009 |
Elastic modulus | 64.44% | 143.407 | 343.892 | −2.399 | −79.109 | 0.207 |
Elastic limit | 39.00% | 8.474 | 48.27 | −28.652 | 311.809 | 0.534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén-Espinoza, M.; Sancho, F.V.; Starbird-Perez, R.; Zamora-Sequeira, R. PEBAX® 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing. J. Compos. Sci. 2024, 8, 314. https://doi.org/10.3390/jcs8080314
Guillén-Espinoza M, Sancho FV, Starbird-Perez R, Zamora-Sequeira R. PEBAX® 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing. Journal of Composites Science. 2024; 8(8):314. https://doi.org/10.3390/jcs8080314
Chicago/Turabian StyleGuillén-Espinoza, Mildred, Fabián Vásquez Sancho, Ricardo Starbird-Perez, and Roy Zamora-Sequeira. 2024. "PEBAX® 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing" Journal of Composites Science 8, no. 8: 314. https://doi.org/10.3390/jcs8080314
APA StyleGuillén-Espinoza, M., Sancho, F. V., Starbird-Perez, R., & Zamora-Sequeira, R. (2024). PEBAX® 5533D Formulation for Enhancement of Mechanical and Thermal Properties of Material Used in Medical Device Manufacturing. Journal of Composites Science, 8(8), 314. https://doi.org/10.3390/jcs8080314