Acoustic Emission during Non-Uniform Progression of Processes in Composite Failure According to the Von Mises Criterion
Abstract
1. Introduction
2. Analysis
2.1. Simulation Conditions
2.2. Simulation Results
3. Discussion of Research Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Toor, Z.S. Space Applications of Composite Materials. J. Space Technol. 2018, 8, 65–70. [Google Scholar]
- Gunale, R.B.; Joshi, S. Applications of composite material in various fields. J. Emerg. Technol. Innov. Res. 2019, 6, 528–540. [Google Scholar]
- Alam, M.I.; Maraz, K.M.; Khan, R.A. A review on the application of high-performance fiber-reinforced polymer composite materials. GSC Adv. Res. Rev. 2022, 10, 20–36. [Google Scholar] [CrossRef]
- Cheng, L.; Karbhari, V.M. New bridge systems using FRP composites and concrete: A state-of-the-art review. Prog. Struct. Eng. Mater. 2006, 8, 143–154. [Google Scholar] [CrossRef]
- Blaga, L.A. Innovating Materials in Bridge Construction; Contribution to Construction with Composite Fiber-Reinforced Materials; EdituraPolitehnica: Timişoara, Romania, 2012. [Google Scholar]
- Jones, F.R. Mechanical Properties of Composite Materials. In Composites Science, Technology, and Engineering; Cambridge University Press: Cambridge, UK, 2022; pp. 160–209. [Google Scholar]
- Karnoub, A.; Huang, H.; Antypas, I. Mechanical properties of composite material laminates reinforced by woven and non-woven glass fibers. In Proceedings of the XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness—INTERAGROMASH 2020”, E3S Web of Conferences, Rostovon-Don, Russia, 29 June 2020. Abstract Number 12005. [Google Scholar]
- Bafekrpour, E. Advanced Composite Materials: Properties and Applications; De Gruyter Open Poland: Warsaw, Poland, 2017. [Google Scholar]
- Singh, T.; Sehgal, S. Structural health monitoring of composite materials. Arch. Comput. Methods Eng. 2022, 29, 1997–2017. [Google Scholar] [CrossRef]
- Metaxa, S.; Kalkanis, K.; Psomopoulos, C.S.; Kaminaris, S.D.; Ioannidis, G. A review of structural health monitoring methods for composite materials. Procedia Struct. Integr. 2019, 22, 369–375. [Google Scholar] [CrossRef]
- Chaki, S.; Krawczak, P. Non-Destructive Health Monitoring of Structural PolymerComposites: Trends and Perspectives in the Digital Era. Materials 2022, 15, 7838. [Google Scholar] [CrossRef] [PubMed]
- Kong, K.; Dyer, K.; Payne, C.; Hamerton, I.; Weaver, P.M. Progress and Trends in Damage Detection Methods, Maintenance, and Data-driven Monitoring of Wind Turbine Blades—A Review. Renew. Energy Focus 2023, 44, 390–412. [Google Scholar] [CrossRef]
- Liu, P. Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kurumatani, M.; Kato, T.; Sasaki, H. Damage model for simulating cohesive fracture behavior of multi-phase composite materials. Adv. Model. Simul. Eng. Sci. 2023, 10, 2. [Google Scholar] [CrossRef]
- Millen, S.L.; Lee, J. Microscale Modelling of Lightning Damage in Fibre-Reinforced Composites. J. Compos. Mater. 2023, 57, 1769–1789. [Google Scholar] [CrossRef]
- Korzec, I.; Samborski, S.; Łusiak, T. A Study on Mechanical Strength and Failure of Fabric Reinforced Polymer Composites. Adv. Sci. Technol. Res. 2022, 16, 120–130. [Google Scholar] [CrossRef]
- Bolcu, D.; Stănescu, M.M.; Miriţoiu, C.M. Some Mechanical Properties of Composite Materials with Chopped Wheat Straw Reinforcer and Hybrid Matrix. Polymers 2022, 14, 3175. [Google Scholar] [CrossRef] [PubMed]
- Ba, Y.; Sun, S. Tensile and Fatigue Properties of Fiber-Reinforced Metal Matrix Composites Cf/5056Al. Compos. Adv. Mater. 2021, 30, 2633366X20929712. [Google Scholar] [CrossRef]
- Gholizadeh, S. Damage Analysis and Prediction in Glass Fiber Reinforced Polyester Composite Using Acoustic Emission and Machine Learning. J. Robot. Autom. Res. 2022, 3, 131–141. [Google Scholar]
- Almeida, R.S.M.; Magalhães, M.D.; Karim, M.N.; Tushtev, K.; Rezwan, K. Identifying Damage Mechanisms of Composites by Acoustic Emission and Supervised Machine Learning. Mater. Des. 2023, 227, 111745. [Google Scholar] [CrossRef]
- Panasiuk, K.; Dudzik, K. Determining the Stages of Deformation and Destruction of Composite Materials in a Static Tensile Test by Acoustic Emission. Materials 2022, 15, 313. [Google Scholar] [CrossRef]
- James, R.; Joseph, R.P.; Giurgiutiu, V. Impact Damage Ascertainment in Composite Plates Using In-Situ Acoustic Emission Signal Signature Identification. J. Compos. Sci. 2021, 5, 79. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, D. Simulation and Feature Analysis of Modal Acoustic Emission Wave in Planar C/SiC Composite. Int. J. Vibroeng. 2018, 20, 748–761. [Google Scholar] [CrossRef]
- Gemmeren, V.; Graf, T.; Dual, J. Modeling the Acoustic Emissions Generated during Dynamic Fracture Under Bending. Int. J. Solids Struct. 2020, 203, 84–91. [Google Scholar] [CrossRef]
- Hamam, Z.; Godin, N.; Fusco, C.; Doitrand, A.; Monnier, T. Acoustic Emission Signal Due to Fiber Break and Fiber Matrix Debonding in Model Composite: A Computational Study. Appl. Sci. 2021, 11, 8406. [Google Scholar] [CrossRef]
- Dzepina, B.; Balinta, D.; Dini, D. A Phase Field Model of Pressure-Assisted Sintering. J. Eur. Ceram. Soc. 2019, 39, 173–182. [Google Scholar] [CrossRef]
- Heinrich, C.; Waas, A.M. Investigation of Progressive Damage and Fracture in Laminated Composites Using the Smeared Crack Approach. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; p. 1537. [Google Scholar]
- Jin, W.; Arson, C. Micromechanics Based Discrete Damage Model with Multiple Non-Smooth Yield Surfaces: Theoretical Formulation, Numerical Implementation and Engineering Applications. Int. J. Damage Mech. 2018, 27, 611–639. [Google Scholar] [CrossRef]
- Turcotte, D.L.; Newman, W.I.; Shcherbakov, R. Micro and Macroscopic Models of Rock Fracture. Geophys. J. Int. 2003, 152, 718–728. [Google Scholar] [CrossRef]
- Swolfs, Y.; McMeeking, R.M.; Rajan, V.P.; Zok, F.W.; Verpoest, I.; Gorbatikh, L. Global Load-Sharing Model for Unidirectional Hybrid Fibre-Reinforced Composites. J. Mech. Phys. Solids 2015, 84, 380–394. [Google Scholar] [CrossRef]
- Kun, F.; Hidalgo, R.C.; Raischel, F.; Herrmann, H.J. Extension of Fibre Bundle Models for Creep Rupture and Interface Failure. Int. J. Fract. 2006, 140, 255–265. [Google Scholar] [CrossRef]
- Raischel, F.; Kun, F.; Herrmann, H.J. A Simple Beam Model for the Shear Failure of Interfaces. Phys. Rev. E 2005, 72, 046126. [Google Scholar] [CrossRef] [PubMed]
- Kovács, K.; Hidalgo, R.C.; Pagonabarraga, I.; Kun, F. Brittle-to-Ductile Transition in a Fiber Bundle with Strong Heterogeneity. Phys. Rev. E 2013, 87, 042816. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, S.; Kjellstadli, J.T.; Hansen, A. Variation of Elastic Energy Shows Reliable Signal of Upcoming Catastrophic Failure. Front. Phys. 2019, 7, 106. [Google Scholar] [CrossRef]
- Danku, Z.; Ódor, G.; Kun, F. Avalanche Dynamics in Higher-Dimensional Fiber Bundle Models. Phys. Rev. E 2018, 98, 042126. [Google Scholar] [CrossRef]
- Tanasehte, M.; Hader, A.; Sbiaai, H.; Achik, I.; Boughaleb, Y. The Effect of Fibers-Matrix Interaction on the Composite Materials Elongation. In Proceedings of the IOP Conference Series: Materials Science and Engineering, International Conference on Advances in Energy Technologies, Environment, El Jadida, Morocco, 13–14 December 2018; p. 012032. [Google Scholar]
- Chakrabarti, B.K.; Biswas, S.; Pradhan, S. Cooperative Dynamics in the Fiber Bundle Model. Front. Phys. 2021, 8, 613392. [Google Scholar] [CrossRef]
- Shcherbakov, R. On Modeling of Geophysical Problems. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 2002. [Google Scholar]
- Filonenko, S.; Kalita, V.; Kosmach, A. Destruction of Composite Material by Shear Load and Formation of Acoustic Radiation. Aviation 2012, 16, 5–13. [Google Scholar] [CrossRef]
- Filonenko, S.; Stadychenko, V. Influence of Loading Speed on Acoustic Emission During Destruction of a Composite by Von Mises Criterion. Am. J. Mech. Mater. Eng. 2020, 4, 54–59. [Google Scholar] [CrossRef]
- Filonenko, S.; Stakhova, A. Amplitude-Energy Parameters of Acoustic Radiation with Composite Properties Changing and Mises Destruction. J. Autom. Mob. Robot. Intell. Syst. 2022, 16, 19–24. [Google Scholar]
- Guo, F.; Li, W.; Jiang, P.; Chen, F.; Liu, Y. Deep Learning Approach for Damage Classification Based on Acoustic Emission Data in Composite Materials. Materials 2022, 15, 4270. [Google Scholar] [CrossRef]
- Roundi, W.; Mahi, A.E.; Rebiere, J.L.; Gharad, A.E. Monitoring Damage Evolution with Acoustic Emission in Two Types of Glass Epoxy Laminates. Polym. Polym. Compos. 2022, 30, 09673911221109906. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filonenko, S.; Stakhova, A.; Bekö, A.; Grmanova, A. Acoustic Emission during Non-Uniform Progression of Processes in Composite Failure According to the Von Mises Criterion. J. Compos. Sci. 2024, 8, 235. https://doi.org/10.3390/jcs8070235
Filonenko S, Stakhova A, Bekö A, Grmanova A. Acoustic Emission during Non-Uniform Progression of Processes in Composite Failure According to the Von Mises Criterion. Journal of Composites Science. 2024; 8(7):235. https://doi.org/10.3390/jcs8070235
Chicago/Turabian StyleFilonenko, Sergii, Anzhelika Stakhova, Adrián Bekö, and Alzbeta Grmanova. 2024. "Acoustic Emission during Non-Uniform Progression of Processes in Composite Failure According to the Von Mises Criterion" Journal of Composites Science 8, no. 7: 235. https://doi.org/10.3390/jcs8070235
APA StyleFilonenko, S., Stakhova, A., Bekö, A., & Grmanova, A. (2024). Acoustic Emission during Non-Uniform Progression of Processes in Composite Failure According to the Von Mises Criterion. Journal of Composites Science, 8(7), 235. https://doi.org/10.3390/jcs8070235