Application of a Multi-Component Composite Edible Coating for the Preservation of Strawberry Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Production of Bio-Cellulose
2.3. Preparation and Application of Composite Coating
2.4. Soluble Solids, Titrable Acidity (TA), and Weight Loss
2.5. Determination of Color Change (ΔE)
2.6. Cellulase Activity
2.7. Antioxidant Activity
2.8. Microorganism Count
2.9. Statistical Analysis
3. Results and Discussion
3.1. Soluble Solids, Titrable Acidity (TA), and Weight Loss
3.2. Color Change (ΔE) Analysis
3.3. Enzymatic Activity
3.4. Antioxidant Activity
3.5. Microbiological Quality
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodaei, D.; Hamidi-Esfahani, Z.; Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 2021, 23, 17–23. [Google Scholar] [CrossRef]
- Ansarifar, E.; Moradinezhad, F. Encapsulation of thyme essential oil using electrospun zein fiber for strawberry preservation. Chem. Biol. Technol. Agric. 2022, 9, 1–11. [Google Scholar] [CrossRef]
- Shankar, S.; Khodaei, D.; Lacroix, M. Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocoll. 2021, 117, 106750. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, Y.; Li, R. Effects of chitosan-based coatings incorporated with ε-polylysine and ascorbic acid on the shelf-life of pork. Food Chem. 2022, 390, 133206. [Google Scholar] [CrossRef]
- Saxena, A.; Sharma, L.; Maity, T. Enrichment of edible coatings and films with plant extracts or essential oils for the preservation of fruits and vegetables. In Biopolymer-Based Formulations; Elsevier: Amsterdam, The Netherlands, 2024; pp. 859–880. [Google Scholar] [CrossRef]
- González-Cuello, R.E.; Mendoza-Nova, L.; Rodriguez-Rodriguez, V.C.; Hernández-Fernández, J.; Ortega-Toro, R. Composite Coatings of Gellan Gum, and Inulin with Lactobacillus casei: Enhancing the Post-Harvest Quality of Guava. J. Compos. Sci. 2024, 8, 353. [Google Scholar] [CrossRef]
- Betelhem, A.; Ramesh, D.; Tewodros, B. Study on the preparation and use of edible coating of fish scale chitosan and glycerol blended banana pseudostem starch for the preservation of apples, mangoes, and strawberries. J. Agric. Food Res. 2024, 15, 100916. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, M.; Arouiee, H.; Golmohammadzadeh, S.; Naseri, M.; Bandian, L. Edible coatings based on solid lipid nanoparticles containing essential oil to improve antimicrobial activity, shelf-life, and quality of strawberries. J. Stored Prod. Res. 2024, 106, 102262. [Google Scholar] [CrossRef]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Dinh, L.N.M.; Yao, Y.; Agarwal, V. Development of hyaluronic acid-based polysaccharide-protein composite edible coatings for preservation of strawberry fruit. Int. J. Biol. Macromol. 2024, 259, 128932. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wu, Y.; Li, C. Development of CO2-sensitive antimicrobial bilayer films based on gellan gum and sodium alginate/sodium carboxymethyl cellulose and its application in strawberries. Int. J. Biol. Macromol. 2024, 264, 130572. [Google Scholar] [CrossRef]
- Rajwade, J.M.; Paknikar, K.M.; Kumbhar, J.V. Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 2015, 99, 2491–2511. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; Sarubbo, L.A. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics, and engineering. A Review. Environ. Chem. Lett. 2020, 18, 851–869. [Google Scholar] [CrossRef]
- Neto, J.R.; Copes, F.; Chevallier, P.; Vieira, R.S.; Da Silva, J.; Mantovani, D.; Beppu, M.M. Polysaccharide-based layer-by-layer nanoarchitectonics with sulfated chitosan for tuning anti-thrombogenic properties. Colloids Surf. B Biointerfaces 2022, 213, 112359. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vatankhah, M.; Hassanisaadi, M.; Shafiei-Hematabad, Z.; Kennedy, J.F. Advancements in coating technologies: Unveiling the potential of chitosan for the preservation of fruits and vegetables. Int. J. Biol. Macromol. 2024, 254, 127677. [Google Scholar] [CrossRef]
- González-Cuello, R.E.; Ramos-Ramírez, E.G.; Cruz-Orea, A.; Salazar-Montoya, J.A. Rheological characterization, and activation energy values of binary mixtures of gellan. Eur. Food Res. Technol. 2012, 234, 305–313. [Google Scholar] [CrossRef]
- Ahmed, M.; Saini, P.; Iqbal, U. Bio cellulose-based edible composite coating for shelf-life extension of tomatoes. Food Hum. 2023, 1, 973–984. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, J.; Huang, F.; Xie, Y.; Guo, Y.; Cheng, Y.; Yao, W. Hexanal as a QS inhibitor of extracellular enzyme activity of Erwinia carotovora and Pseudomonas fluorescens and its application in vegetables. Food Chem. 2018, 255, 1–7. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, L.; Hu, Y.; Zhu, Z.; Zhuang, C.; Zhao, Y.; Zhong, Y. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int. J. Biol. Macromol. 2019, 139, 1232–1238. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.A.; Soliman, S.A. Improving the shelf-life stability of apple and strawberry fruits applying chitosan-incorporated olive oil processing residues coating. Food Packag. Shelf Life 2016, 9, 10–19. [Google Scholar]
- Li, N.; Cheng, Y.; Li, Z.; Tian, Y.; Yuan, Y. An alginate-based edible coating containing lactic acid bacteria extends the shelf life of fresh strawberry (Fragaria × ananassa Duch.). Int. J. Biol. Macromol. 2024, 274 Pt 1, 133273. [Google Scholar] [CrossRef]
- Sousa-Gallagher, M.J.; Mahajan, P.V. Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation. Food Control 2013, 29, 444–450. [Google Scholar] [CrossRef]
- Braccini, I.; Pérez, S. Molecular basis of Ca2⁺-induced gelation in alginates and pectins: The egg-box model revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.-Y.; Yang, J.-Y.; Lu, H.-B.; Wang, S.-S.; Yang, J.; Yang, X.-C.; Chai, M.; Li, L.; Cao, J.-X. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.M.; Gull, A.; Ahad, T.; Malik, A.; Ganaie, T.A.; Masoodi, F.A.; Gani, A. Effect of gum Arabic, xanthan and carrageenan coatings containing antimicrobial agent on postharvest quality of strawberry: Assessing the physicochemical, enzyme activity and bioactive properties. Int. J. Biol. Macromol. 2021, 183, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; He, Y.; Li, Y.; Chen, X.; Feng, Y.; Xue, Z. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Lacroix, M.; Ouattara, B. Combined industrial processes with irradiation to assure innocuity and preservation of food products—A review. Food Res. Int. 2000, 33, 719–724. [Google Scholar] [CrossRef]
- Van, T.T.; Nguyen, P.N.T.H.; Sakamoto, K.; Wigati, L.P.; Tanaka, F.; Tanaka, F. Effect of edible coating incorporating sodium carboxymethyl cellulose/cellulose nanofibers and self-produced mandarin oil on strawberries. Food Packag. Shelf Life 2023, 40, 101197. [Google Scholar] [CrossRef]
- Perumal, A.B.; Nambiar, R.B.; Sellamuthu, P.S.; Emmanuel, R.S. Use of modified atmosphere packaging combined with essential oils for prolonging post-harvest shelf life of mango (cv. Banganapalli and cv. Totapuri). LWT 2021, 148, 111662. [Google Scholar] [CrossRef]
- Meitha, K.; Pramesti, Y.; Suhandono, S. Reactive oxygen species and antioxidants in postharvest vegetables and fruits. Int. J. Food Sci. 2020, 2020, 8817778. [Google Scholar] [CrossRef]
- Oladzadabbasabadi, N.; Mohammadi Nafchi, A.; Ariffin, F.; Wijekoon, M.M.J.O.; Al-Hassan, A.A.; Dheyab, M.A.; Ghasemlou, M. Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr. Polym. 2022, 277, 118876. [Google Scholar] [CrossRef]
- Mohammadi, L.; Khankahdani, H.H.; Tanaka, F.; Tanaka, F. Postharvest shelf-life extension of button mushroom (Agaricus bisporus L.) by Aloe vera gel coating enriched with basil essential oil. Environ. Control Biol. 2021, 59, 87–98. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Garcia, O.R.; Gutierrez, R.; Luna, J.C.; Villa, C.C. Increasing shelf life of strawberries (Fragaria ssp) by using a banana starch-chitosan-Aloe vera gel composite edible coating. Int. J. Food Sci. Technol. 2020, 55, 92–98. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; Santana, L.C. Impact of edible chitosan-cassava starch coatings enriched with Lippia gracilis Schauer genotype mixtures on the shelf life of guavas (Psidium guajava L.) during storage at room temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Howard, L.; Dewi, T. Sensory, microbiological, and chemical quality of mini-peeled carrots as affected by edible coating treatment. J. Food Sci. 2006, 60, 142–144. [Google Scholar] [CrossRef]
Coating Name | Bacterial Cellulose (% p/v) | Chitosan (% p/v) | Gellan Gum (% p/v) |
---|---|---|---|
BChG-1 | 25 | 0.4 | 0.3 |
BChG-2 | 4 | 0.4 | 0.8 |
BChG-3 | 4 | 2.0 | 0.3 |
BChG-4 | 25 | 2.0 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Cuello, R.; Parada-Castro, A.L.; Ortega-Toro, R. Application of a Multi-Component Composite Edible Coating for the Preservation of Strawberry Fruit. J. Compos. Sci. 2024, 8, 515. https://doi.org/10.3390/jcs8120515
González-Cuello R, Parada-Castro AL, Ortega-Toro R. Application of a Multi-Component Composite Edible Coating for the Preservation of Strawberry Fruit. Journal of Composites Science. 2024; 8(12):515. https://doi.org/10.3390/jcs8120515
Chicago/Turabian StyleGonzález-Cuello, Rafael, Aura Lucia Parada-Castro, and Rodrigo Ortega-Toro. 2024. "Application of a Multi-Component Composite Edible Coating for the Preservation of Strawberry Fruit" Journal of Composites Science 8, no. 12: 515. https://doi.org/10.3390/jcs8120515
APA StyleGonzález-Cuello, R., Parada-Castro, A. L., & Ortega-Toro, R. (2024). Application of a Multi-Component Composite Edible Coating for the Preservation of Strawberry Fruit. Journal of Composites Science, 8(12), 515. https://doi.org/10.3390/jcs8120515