Enset Fiber-Reinforced Polylactic Acid-Based Biocomposites for High-Performance Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. EF Modification
2.3. Enset–PLA Fiber Mat Preparation
2.4. Fabrication of Enset Fibers PLA Biocomposites
3. Characterizations
3.1. Tensile Test
3.2. Flexural Test
3.3. Impact Test
3.4. Water Absorption Test
3.5. Dynamic Mechanical Analysis (DMA) Test
3.6. Morphological Characterization
4. Results and Discussion
4.1. Mechanical Properties
4.1.1. Tensile Properties
4.1.2. Flexural Properties
4.1.3. Impact Property
4.2. Water Absorption Property
4.3. Dynamic Mechanical Properties
4.4. Composite Morphology
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinod, A.; Sanjay, M.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Gheith, M.H.; Aziz, M.A.; Ghori, W.; Saba, N.; Asim, M.; Jawaid, M.; Alothman, O.Y. Flexural, thermal and dynamic mechanical properties of date palm fibres reinforced epoxy composites. J. Mater. Res. Technol. 2019, 8, 853–860. [Google Scholar] [CrossRef]
- Sanjay, M.; Madhu, P.; Jawaid, M.; Senthamaraikannan, P.; Senthil, S.; Pradeep, S. Characterization and properties of natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2018, 172, 566–581. [Google Scholar] [CrossRef]
- Ammar, Z.; Ibrahim, H.; Adly, M.; Sarris, I.; Mehanny, S. Influence of natural fiber content on the frictional material of brake pads—A review. J. Compos. Sci. 2023, 7, 72. [Google Scholar] [CrossRef]
- Vinod, A.; Rangappa, S.M.; Srisuk, R.; Tengsuthiwat, J.; Ramnath, A.; Siengchin, S. Agro-waste Capsicum Annum stem: An alternative raw material for lightweight composites. Ind. Crop. Prod. 2023, 193, 116141. [Google Scholar] [CrossRef]
- Zhan, J.; Li, J.; Wang, G.; Guan, Y.; Zhao, G.; Lin, J.; Naceur, H.; Coutellier, D. Review on the performances, foaming and injection molding simulation of natural fiber composites. Polym. Compos. 2021, 42, 1305–1324. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C.; Kumar, L.R.; Sanjay, M.; Siengchin, S. Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. J. Ind. Text. 2022, 51, 5518S–5542S. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Refate, A.; Mohamed, Y.; Mohamed, M.; Sobhy, M.; Samhy, K.; Khaled, O.; Eidaroos, K.; Batikh, H.; El-Kashif, E.; El-Khatib, S. Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon 2023, 9, e17051. [Google Scholar]
- Imran, M.; Khan, R.; Rafiullah, S. Vibration analysis of cracked composite laminated plate: A review. Mehran Univ. Res. J. Eng. Technol. 2019, 38, 705–716. [Google Scholar] [CrossRef]
- Santhosh, J.; Balanarasimman, N.; Chandrasekar, R.; Raja, S. Study of properties of banana fiber reinforced composites. Int. J. Res. Eng. Technol 2014, 3, 144–150. [Google Scholar]
- Jogi, S.A.; Baloch, M.M.; Chandio, A.D.; Memon, I.A.; Chandio, G.S. Evaluation of impact strength of epoxy based hybrid composites reinforced with E-Glass/Kevlar 49. Mehran Univ. Res. J. Eng. Technol. 2017, 36, 1009–1016. [Google Scholar] [CrossRef]
- Rashan, L.; Hakkim, F.L.; Idrees, M.; Essa, M.; Velusamy, T.; Al-Baloshi, M.; Al-Bulushi, B.; Al Jabri, A.; Alrizeiki, M.; Guillemin, G. Boswellia gum resin and essential oils: Potential health benefits−An evidence based review. Int. J. Nutr. Pharmacol. Neurol. Dis. 2019, 9, 53–71. [Google Scholar] [CrossRef]
- Mizera, Č.; Hrabě, P.; Müller, M.; Herák, D. Creep behaviour of the polymer composite with false banana’s fibres (Ensete ventricosum). Manuf. Technol. 2016, 16, 188–192. [Google Scholar] [CrossRef]
- Mohammed, B.; Gabel, M.; Karlsson, L.M. Nutritive values of the drought tolerant food and fodder crop enset. Afr. J. Agric. Res. 2013, 8, 2326–2333. [Google Scholar] [CrossRef]
- Ayele, A.; Sahu, O. Extension of Enset plant product for rural development in Ethiopia. J. Agric. Econ. Ext. Rural Dev. 2014, 2, 31–40. [Google Scholar]
- Blomme, G.; Sebuwufu, G.; Addis, T.; Turyagyenda, L. Relative performance of root and shoot development in enset and east African highland bananas. Afr. Crop Sci. J. 2008, 16, 51–57. [Google Scholar] [CrossRef]
- Birmeta, G. Genetic Variability and Biotechnological Studies for the Conservation and Improvement of Ensete ventricosum. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2004. [Google Scholar]
- Hemida, M.H.; Moustafa, H.; Mehanny, S.; Morsy, M.; Dufresne, A.; Rahman, E.N.A.E.; Ibrahim, M. Cellulose nanocrystals from agricultural residues (Eichhornia crassipes): Extraction and characterization. Heliyon 2023, 9, e16436. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M.; Drzal, L. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002, 10, 19–26. [Google Scholar] [CrossRef]
- Pupure, L.; Varna, J.; Joffe, R. Natural fiber composite: Challenges simulating inelastic response in strain-controlled tensile tests. J. Compos. Mater. 2016, 50, 575–587. [Google Scholar] [CrossRef]
- Temesgen, A.G.; Recep, E.; Aykut, Y.; Süvari, F. Evaluation of Enset fabric reinforced green composite as sound absorber structure. Text. Appar. 2021, 31, 73–81. [Google Scholar] [CrossRef]
- Zeleke, Y.; Rotich, G.K. Design and development of false ceiling board using polyvinyl acetate (PVAc) composite reinforced with false banana fibres and filled with sawdust. Int. J. Polym. Sci. 2021, 2021, 5542329. [Google Scholar] [CrossRef]
- Bekele, A.E.; Lemu, H.G.; Jiru, M.G. Study of the effects of alkali treatment and fiber orientation on mechanical properties of enset/sisal polymer hybrid composite. J. Compos. Sci. 2023, 7, 37. [Google Scholar] [CrossRef]
- Batu, T.; Lemu, H.G. Investigation of mechanical properties of false banana/glass fiber reinforced hybrid composite materials. Results Mater. 2020, 8, 100152. [Google Scholar] [CrossRef]
- Vigneshwaran, S.; Sundarakannan, R.; John, K.; Johnson, R.D.J.; Prasath, K.A.; Ajith, S.; Arumugaprabu, V.; Uthayakumar, M. Recent advancement in the natural fiber polymer composites: A comprehensive review. J. Clean. Prod. 2020, 277, 124109. [Google Scholar] [CrossRef]
- Shanmugam, V.; Mensah, R.A.; Försth, M.; Sas, G.; Restás, Á.; Addy, C.; Xu, Q.; Jiang, L.; Neisiany, R.E.; Singha, S.; et al. Circular economy in biocomposite development: State-of-the-art, challenges and emerging trends. Compos. Part C Open Access 2021, 5, 100138. [Google Scholar] [CrossRef]
- Sanjay, M.; Siengchin, S.; Parameswaranpillai, J.; Jawaid, M.; Pruncu, C.I.; Khan, A. A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydr. Polym. 2019, 207, 108–121. [Google Scholar]
- Yorseng, K.; Rangappa, S.M.; Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr. Build. Mater. 2020, 235, 117464. [Google Scholar] [CrossRef]
- Reddy, B.M.; Mohana Reddy, Y.V.; Mohan Reddy, B.C.; Reddy, R.M. Mechanical, morphological, and thermogravimetric analysis of alkali-treated Cordia-Dichotoma natural fiber composites. J. Nat. Fibers 2020, 17, 759–768. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Oushabi, A.; Sair, S.; Hassani, F.O.; Abboud, Y.; Tanane, O.; El Bouari, A. The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. S. Afr. J. Chem. Eng. 2017, 23, 116–123. [Google Scholar] [CrossRef]
- Kamarudin, S.H.; Abdullah, L.C.; Aung, M.M.; Ratnam, C.T.; Jusoh, E.R. A study of mechanical and morphological properties of PLA based biocomposites prepared with EJO vegetable oil based plasticiser and kenaf fibres. Mater. Res. Express 2018, 5, 085314. [Google Scholar] [CrossRef]
- Temesgen, A.G.; Sahu, O. Process ability enhancement of false banana fibre for rural development. Cellulose 2014, 1, 64–73. [Google Scholar]
- Teli, M.D.; Terega, J.M. Chemical, physical and thermal characterization of Ensete ventricosum plant fibre. Int. Res. J. Eng. Technol. 2017, 4, 67–75. [Google Scholar]
- Khalil, H.A.; Jawaid, M.; Bakar, A.A. Woven hybrid composites: Water absorption and thickness swelling behaviours. BioResources 2011, 6, 1043–1052. [Google Scholar] [CrossRef]
- Ramesh, M.; Deepa, C.; Selvan, M.T.; Rajeshkumar, L.; Balaji, D.; Bhuvaneswari, V. Mechanical and water absorption properties of Calotropis gigantea plant fibers reinforced polymer composites. Mater. Today Proc. 2021, 46, 3367–3372. [Google Scholar] [CrossRef]
- Saravanakumar, S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef]
- Balaji, A.; Karthikeyan, B.; Swaminathan, J.; Raj, C.S. Effect of filler content of chemically treated short bagasse fiber-reinforced cardanol polymer composites. J. Nat. Fibers 2018, 16, 613–627. [Google Scholar] [CrossRef]
- da Silva, A.L.; da Silva, L.R.R.; de Andrade Camargo, I.; da Silva Agostini, D.L.; dos Santos Rosa, D.; de Oliveira, D.L.V.; Fechine, P.B.A.; Mazzetto, S.E. Cardanol-based thermoset plastic reinforced by sponge gourd fibers (Luffa cylindrica). Polímeros 2016, 26, 21–29. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y.; Ansell, M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234. [Google Scholar] [CrossRef]
- Hassan, A.; Rafiq, M.I.M.; Ariffin, M.I.Z. Improving thermal and mechanical properties of injection moulded kenaf fibre-reinforced polyhydroxy-butyrate composites through fibre surface treatment. BioResources 2019, 14, 3101–3116. [Google Scholar] [CrossRef]
- Tran, D.; Nguyen, D.; Thuc, C.H.; Dang, T. Effect of coupling agents on the properties of bamboo fiber-reinforced unsaturated polyester resin composites. Compos. Interfaces 2013, 20, 343–353. [Google Scholar] [CrossRef]
- Nadlene, R.; Sapuan, S.; Jawaid, M.; Ishak, M.; Yusriah, L. The effects of chemical treatment on the structural and thermal, physical, and mechanical and morphological properties of roselle fiber-reinforced vinyl ester composites. Polym. Compos. 2018, 39, 274–287. [Google Scholar] [CrossRef]
- Ramesh, M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Prog. Mater. Sci. 2019, 102, 109–166. [Google Scholar] [CrossRef]
- Joseph, S.; Sreekala, M.; Oommen, Z.; Koshy, P.; Thomas, S. A comparison of the mechanical properties of phenol formaldehyde composites reinforced with banana fibres and glass fibres. Compos. Sci. Technol. 2002, 62, 1857–1868. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- Siakeng, R.; Jawaid, M.; Asim, M.; Saba, N.; Sanjay, M.; Siengchin, S.; Fouad, H. Alkali treated coir/pineapple leaf fibres reinforced PLA hybrid composites: Evaluation of mechanical, morphological, thermal and physical properties. Express Polym. Lett. 2020, 14, 717–730. [Google Scholar] [CrossRef]
- Bisanda, E. The effect of alkali treatment on the adhesion characteristics of sisal fibres. Appl. Compos. Mater. 2000, 7, 331–339. [Google Scholar] [CrossRef]
- Ashori, A.; Sheshmani, S. Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behavior. Bioresour. Technol. 2010, 101, 4717–4720. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.A.; Alattas, O.S. Woven hybrid biocomposites: Dynamic mechanical and thermal properties. Compos. Part A Appl. Sci. Manuf. 2012, 43, 288–293. [Google Scholar] [CrossRef]
- Mohanty, S.; Verma, S.K.; Nayak, S.K. Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 2006, 66, 538–547. [Google Scholar] [CrossRef]
- Hossen, M.M.; Feng, J.; Yuxiang, Y.; Jiang, W. Preparation and evaluation mechanical, chemical and thermal properties of hybrid jute and coir fibers reinforced bio-composites using poly-lactic acid and poly-caprolactone blends. Mater. Res. Express 2020, 7, 025103. [Google Scholar] [CrossRef]
Chemical Composition of EF [35] | Mechanical Property of EF [36] | ||
---|---|---|---|
Cellulose | 64–68% | Tensile strength (MPa) | 351.67 ± 130.30 |
Hemicelluloses | 10–20% | Elongation at break (%) | 3.16 ± 0.66 |
Lignin | 4–6% | Physical Property EF [35] | |
Other impurities | 2% | Diameter (μm) | 194–206 |
Crystallinity index | 65% | Density (g/cm3) | 1.2 |
Sample Code | NaOH Concentration (%) |
---|---|
Untreated EF (UEF/PLA) | 0 |
3% alkali-treated EF (3EF/PLA) | 3 |
5% alkali-treated EF (5EF/PLA) | 5 |
7% alkali-treated EF (7EF/PLA) | 7 |
Sample Code | Tensile Strength (MPa) | Tensile Modulus (GPa) | Flexural Strength (MPa) | Flexural Modulus (GPa) | Impact Strength (kJ/m2) |
---|---|---|---|---|---|
UEF/PLA | 14.54 ± 1.52 | 1.13 ± 0.15 | 22.21 ± 2.52 | 1.21 ± 0.12 | 8.60 ± 1.07 |
3EF/PLA | 18.81 ± 2.67 | 1.64 ± 0.19 | 28.53 ± 2.17 | 1.92 ± 0.21 | 11.24 ± 1.61 |
5EF/PLA | 20.16 ± 2.4 | 1.76 ± 0.21 | 30.21 ± 2.49 | 2.06 ± 0.20 | 12.02 ± 1.37 |
7EF/PLA | 17.95 ± 1.75 | 1.55 ± 0.23 | 27.45 ± 2.74 | 1.88 ± 0.25 | 10.71 ± 1.43 |
Sample Code | Peak E′ (MPa) | Peak E″ (MPa) | Tg from E″ Curve (°C) | Tan δ | Tg from Tan δ Curve (°C) |
---|---|---|---|---|---|
UEF/PLA | 1142 | 91 | 78 | 0.16035 | 79 |
3EF/PLA | 1400 | 111 | 89 | 0.14307 | 89 |
5EF/PLA | 1451 | 118 | 84 | 0.14047 | 91 |
7EF/PLA | 1255 | 97 | 82 | 0.15176 | 87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abraha, K.G.; Debeli, D.K.; Ghani, M.U.; Tesfahunegn, A.A.; Guo, J. Enset Fiber-Reinforced Polylactic Acid-Based Biocomposites for High-Performance Application. J. Compos. Sci. 2023, 7, 407. https://doi.org/10.3390/jcs7100407
Abraha KG, Debeli DK, Ghani MU, Tesfahunegn AA, Guo J. Enset Fiber-Reinforced Polylactic Acid-Based Biocomposites for High-Performance Application. Journal of Composites Science. 2023; 7(10):407. https://doi.org/10.3390/jcs7100407
Chicago/Turabian StyleAbraha, Kahsay Gebresilassie, Dereje Kebebew Debeli, Muhammad Usman Ghani, Awet Arefe Tesfahunegn, and Jiansheng Guo. 2023. "Enset Fiber-Reinforced Polylactic Acid-Based Biocomposites for High-Performance Application" Journal of Composites Science 7, no. 10: 407. https://doi.org/10.3390/jcs7100407