Single-Component Physical Hydrogels of Dendritic Molecules
Abstract
:1. Introduction
2. Phosphorus Dendrimers as Physical Hydrogels and Their Properties
2.1. Phosphorus Dendrimers as Building Blocks for Physical Hydrogels
2.2. Phosphorus Dendrimers in Hydrogels
3. PAMAM Dendrimers as Physical Hydrogels and Their Properties
4. Janus Dendrimers as Physical Hydrogels and Their Properties
5. Dendrons as Physical Hydrogels and Their Properties
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peppas, N.A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Del. Rev. 2012, 64, 49–60. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071. [Google Scholar] [CrossRef]
- Narayanaswamy, R.; Torchilin, V.P. Hydrogels and Their Applications in Targeted Drug Delivery. Molecules 2019, 24, 603. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.Y.; Mooney, D.J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1879. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Hu, W.K.; Wang, Z.J.; Xiao, Y.; Zhang, S.M.; Wang, J.L. Advances in crosslinking strategies of biomedical hydrogels. Biomater. Sci. 2019, 7, 843–855. [Google Scholar] [CrossRef]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef]
- Kaga, S.; Arslan, M.; Sanyal, R.; Sanyal, A. Dendrimers and Dendrons as Versatile Building Blocks for the Fabrication of Functional Hydrogels. Molecules 2016, 21, 497. [Google Scholar] [CrossRef]
- Newkome, G.R.; Baker, G.R.; Saunders, M.J.; Russo, P.S.; Gupta, V.K.; Yao, Z.Q.; Miller, J.E.; Bouillion, K. Two-directional Cascade Molecules: Synthesis and Characterization of [9]-n-[9] Arborols. J. Chem. Soc.-Chem. Commun. 1986, 10, 752–753. [Google Scholar] [CrossRef]
- Newkome, G.R.; Baker, G.R.; Arai, S.; Saunders, M.J.; Russo, P.S.; Theriot, K.J.; Moorefield, C.N.; Rogers, L.E.; Miller, J.E.; Lieux, T.R.; et al. Synthesis and Characterization of Two-Directional Cascade Molecules and Formation of Aqueous Gels. J. Am. Chem. Soc. 1990, 112, 8458–8465. [Google Scholar] [CrossRef]
- Newkome, G.R.; Moorefield, C.N.; Baker, G.R.; Behera, R.K.; Escamillia, G.H.; Saunders, M.J. Supramolecular Self-Assemblies of Two-Directional Cascade Molecules: Automorphogenesis. Angew. Chem.-Int. Ed. Engl. 1992, 31, 917–919. [Google Scholar] [CrossRef]
- Jorgensen, M.; Bechgaard, K.; Bjornholm, T.; Sommerlarsen, P.; Hansen, L.G.; Schaumburg, K. Synthesis and Structural Characterization of a Bis-arborol-Tetrathiafulvalene Gel: Toward a Self-Assembling “Molecular” Wire. J. Org. Chem. 1994, 59, 5877–5882. [Google Scholar] [CrossRef]
- Marmillon, C.; Gauffre, F.; Gulik-Krzywicki, T.; Loup, C.; Caminade, A.M.; Majoral, J.P.; Vors, J.P.; Rump, E. Organophosphorus dendrimers as new gelators for hydrogels. Angew. Chem. Int. Ed. 2001, 40, 2626–2629. [Google Scholar] [CrossRef]
- Galliot, C.; Larre, C.; Caminade, A.M.; Majoral, J.P. Regioselective stepwise growth of dendrimer units in the internal voids of a main dendrimer. Science 1997, 277, 1981–1984. [Google Scholar] [CrossRef]
- Caminade, A.M.; Majoral, J.P. Positively charged phosphorus dendrimers. An overview of their properties. New J. Chem. 2013, 37, 3358–3373. [Google Scholar] [CrossRef]
- El Ghzaoui, A.; Gauffre, F.; Caminade, A.M.; Majoral, J.P.; Lannibois-Drean, H. Self-assembly of water-soluble dendrimers into thermoreversible hydrogels and macroscopic fibers. Langmuir 2004, 20, 9348–9353. [Google Scholar] [CrossRef]
- Larpent, C.; Genies, C.; Delgado, A.P.D.; Caminade, A.M.; Majoral, J.P.; Sassi, J.F.; Leising, F. Giant dendrimer-like particles from nanolatexes. Chem. Commun. 2004, 16, 1816–1817. [Google Scholar] [CrossRef]
- Caminade, A.-M.; Hameau, A.; Majoral, J.-P. The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans. 2016, 45, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Apartsin, E.K.; Grigoryeva, A.E.; Malrin-Fournol, A.; Ryabchikova, E.I.; Venyaminova, A.G.; Mignani, S.; Caminade, A.M.; Majoral, J.P. Hydrogels of Polycationic Acetohydrazone-Modified Phosphorus Dendrimers for Biomedical Applications: Gelation Studies and Nucleic Acid Loading. Pharmaceutics 2018, 10, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramaswamy, C.; Sakthivel, T.; Wilderspin, A.F.; Florence, A.T. Dendriplexes and their characterization. Int. J. Pharm. 2003, 254, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Padie, C.; Maszewska, M.; Majchrzak, K.; Nawrot, B.; Caminade, A.M.; Majoral, J.P. Polycationic phosphorus dendrimers: Synthesis, characterization, study of cytotoxicity, complexation of DNA, and transfection experiments. New J. Chem. 2009, 33, 318–326. [Google Scholar] [CrossRef]
- Kazmierczak-Baranska, J.; Pietkiewicz, A.; Janicka, M.; Wei, Y.Q.; Turrin, C.O.; Majoral, J.P.; Nawrot, B.; Caminade, A.M. Synthesis of a Fluorescent Cationic Phosphorus Dendrimer and Preliminary Biological Studies of Its Interaction with DNA. Nucl. Nucl. Nucleic Acids 2010, 29, 155–167. [Google Scholar] [CrossRef]
- Servin, P.; Laurent, R.; Tristany, M.; Romerosa, A.; Peruzzini, M.; Garcia-Maroto, F.; Majoral, J.-P.; Caminade, A.-M. Dual properties of water-soluble Ru-PTA complexes of dendrimers: Catalysis and interaction with DNA. Inorg. Chim. Acta 2018, 470, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Loup, C.; Zanta, M.A.; Caminade, A.M.; Majoral, J.P.; Meunier, B. Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chem.-Eur. J. 1999, 5, 3644–3650. [Google Scholar] [CrossRef]
- Gomulak, P.; Klajnert, B.; Bryszewska, M.; Majoral, J.P.; Caminade, A.M.; Blasiak, J. Cytotoxicity and Genotoxicity of Cationic Phosphorus-Containing Dendrimers. Curr. Med. Chem. 2012, 19, 6233–6240. [Google Scholar] [CrossRef]
- Ionov, M.; Lazniewska, J.; Dzmitruk, V.; Halets, I.; Loznikova, S.; Novopashina, D.; Apartsin, E.; Krasheninina, O.; Venyaminova, A.; Milowska, K.; et al. Anticancer siRNA cocktails as a novel tool to treat cancer cells. Part (A). Mechanisms of interaction. Int. J. Pharm. 2015, 485, 261–269. [Google Scholar] [CrossRef]
- Ihnatsyeu-Kachan, A.; Dzmitruk, V.; Apartsin, E.; Krasheninina, O.; Ionov, M.; Loznikova, S.; Venyaminova, A.; Milowska, K.; Shcharbin, D.; Mignani, S.; et al. Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. Colloids Interfaces 2017, 1, 6. [Google Scholar] [CrossRef]
- Apartsin, E.; Venyaminova, A.; Majoral, J.-P.; Caminade, A.-M. Dendriplex-Impregnated Hydrogels with Programmed Release Rate. Front. Chem. 2022, 9, 780608. [Google Scholar] [CrossRef] [PubMed]
- Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers—Starburst-dendritic macromolecules. Polym. J. 1985, 17, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.M.; Lu, S.Y.; Liu, M.Z.; Wu, C.; Xiong, Y. CO2-switchable fluorescence of a dendritic polymer and its applications. Nanoscale 2016, 8, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhang, S.S.; Wan, Y.M.; Fu, W.X.; Li, Z.B. Hydrogels assembled from star-shaped polypeptides with a dendrimer as the core. Soft Matter 2015, 11, 2945–2951. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Tsumura, S.; Harada, A.; Kono, K. A Collagen-Mimic Dendrimer Capable of Controlled Release. J. Am. Chem. Soc. 2009, 131, 6052–6053. [Google Scholar] [CrossRef]
- Suehiro, T.; Tada, T.; Waku, T.; Tanaka, N.; Hongo, C.; Yamamoto, S.; Nakahira, A.; Kojima, C. Temperature-Dependent Higher Order Structures of the (Pro-Pro-Gly)(10)-Modified Dendrimer. Biopolymers 2011, 95, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Kojima, C.; Suehiro, T.; Tada, T.; Sakamoto, Y.; Waku, T.; Tanaka, N. Preparation of heat-induced artificial collagen gels based on collagen-mimetic dendrimers. Soft Matter 2011, 7, 8991–8997. [Google Scholar] [CrossRef]
- Kojima, C.; Suehiro, T. Improvement of Temperature-responsive Drug Release from Collagen-mimic Dendrimers. Chem. Lett. 2011, 40, 1249–1251. [Google Scholar] [CrossRef]
- Kojima, C.; Suehiro, T.; Watanabe, K.; Ogawa, M.; Fukuhara, A.; Nishisaka, E.; Harada, A.; Kono, K.; Inui, T.; Magata, Y. Doxorubicin-conjugated dendrimer/collagen hybrid gels for metastasis-associated drug delivery systems. Acta Biomater. 2013, 9, 5673–5680. [Google Scholar] [CrossRef]
- Caminade, A.M.; Laurent, R.; Delavaux-Nicot, B.; Majoral, J.P. “Janus” dendrimers: Syntheses and properties. New J. Chem. 2012, 36, 217–226. [Google Scholar] [CrossRef]
- Nummelin, S.; Liljestrom, V.; Saarikoski, E.; Ropponen, J.; Nykanen, A.; Linko, V.; Seppala, J.; Hirvonen, J.; Ikkala, O.; Bimbo, L.M.; et al. Self-Assembly of Amphiphilic Janus Dendrimers into Mechanically Robust Supramolecular Hydrogels for Sustained Drug Release. Chem.-Eur. J. 2015, 21, 14433–14439. [Google Scholar] [CrossRef] [Green Version]
- Prabakaran, P.; Prasad, E. Janus Dendrimer from Poly(Aryl Ether) Linked PAMAM for Supergelation and Guest Release. Chemistryselect 2016, 1, 5561–5568. [Google Scholar] [CrossRef]
- Apartsin, E.; Caminade, A. Supramolecular Self-Associations of Amphiphilic Dendrons and Their Properties. Chem. Eur. J. 2021, 27, 17976–17998. [Google Scholar] [CrossRef] [PubMed]
- McWatt, M.; Boons, G.J. Parallel combinatorial synthesis of glycodendrimers and their hydrogelation properties. Eur. J. Org. Chem. 2001, 2001, 2535–2545. [Google Scholar] [CrossRef]
- Sako, Y.; Takaguchi, Y. A photo-responsive hydrogelator having gluconamides at its peripheral branches. Org. Biomol. Chem. 2008, 6, 3843–3847. [Google Scholar] [CrossRef]
- Duan, P.F.; Liu, M.H. Design and Self-Assembly of L-Glutamate-Based Aromatic Dendrons as Ambidextrous Gelators of Water and Organic Solvents. Langmuir 2009, 25, 8706–8713. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Ito, Y.; Chiu, Y.C.; Wu, W.C.; Higashihara, T.; Ueda, M.; Chen, W.C. Design and Synthesis of New Cationic Water-Soluble Pyrene Containing Dendrons for DNA Sensory Applications. J. Polym. Sci. Part A-Polym. Chem. 2012, 50, 297–305. [Google Scholar] [CrossRef]
- Chen, C.Y.; Ito, Y.; Chiu, Y.C.; Wu, W.C.; Higashihara, T.; Ueda, M.; Chen, W.C. pH-responsive Dendritic Gelators. Chem. Lett. 2012, 41, 92–94. [Google Scholar] [CrossRef]
- Morita, C.; Kawai, C.; Kikuchi, A.; Imura, Y.; Kawai, T. Effect of amide moieties for hydrogelators on gelation property and heating-free pH responsive gel-sol phase transition. J. Oleo Sci. 2012, 61, 707–713. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.F.; Qin, L.; Zhu, X.F.; Liu, M.H. Hierarchical Self-Assembly of Amphiphilic Peptide Dendrons: Evolution of Diverse Chiral Nanostructures Through Hydrogel Formation Over a Wide pH Range. Chem.-Eur. J. 2011, 17, 6389–6395. [Google Scholar] [CrossRef]
- Qin, L.; Duan, P.F.; Xie, F.; Zhang, L.; Liu, M.H. A metal ion triggered shrinkable supramolecular hydrogel and controlled release by an amphiphilic peptide dendron. Chem. Commun. 2013, 49, 10823–10825. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Xie, F.; Duan, P.F.; Liu, M.H. A Peptide Dendron-Based Shrinkable Metallo-Hydrogel for Charged Species Separation and Stepwise Release of Drugs. Chem.-Eur. J. 2014, 20, 15419–15425. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Xie, F.; Jin, X.; Liu, M.H. Driving Helical Packing of a Cyanine Dye on Dendron Nanofiber: Gel-Shrinkage-Triggered Chiral H-Aggregation and Enhanced Enantiodiscrimination. Chem.-Eur. J. 2015, 21, 11300–11305. [Google Scholar] [CrossRef]
- Xie, F.; Qin, L.; Liu, M.H. A dual thermal and photo-switchable shrinking-swelling supramolecular peptide dendron gel. Chem. Commun. 2016, 52, 930–933. [Google Scholar] [CrossRef] [Green Version]
- Rajamalli, P.; Sheet, P.S.; Prasad, E. Glucose-cored poly(aryl ether) dendron based low molecular weight gels: pH controlled morphology and hybrid hydrogel formation. Chem. Commun. 2013, 49, 6758–6760. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Soumya, S.; Prasad, E. Enhanced Resonance Energy Transfer and White-Light Emission from Organic Fluorophores and Lanthanides in Dendron-based Hybrid Hydrogel. ACS Appl. Mater. Interfaces 2016, 8, 8068–8075. [Google Scholar] [CrossRef]
- Wang, L.Y.; Feng, Y.; Sun, Y.W.; Li, Z.B.; Yang, Z.Q.; He, Y.M.; Fan, Q.H.; Liu, D.S. Amphiphilic DNA-dendron hybrid: A new building block for functional assemblies. Soft Matter 2011, 7, 7187–7190. [Google Scholar] [CrossRef]
- Retention and Duration of Activity of SPL7013 (VivaGel®) after Vaginal Dosing. Available online: https://clinicaltrials.gov/ct2/show/NCT00740584 (accessed on 5 January 2023).
- Nandy, B.; Saurabh, S.; Sahoo, A.K.; Dixit, N.M.; Maiti, P.K. The SPL7013 dendrimer destabilizes the HIV-1 gp120–CD4 complex. Nanoscale 2015, 7, 18628–18641. [Google Scholar] [CrossRef]
- Pellett Madan, R.; Dezzutti, C.S.; Rabe, L.; Hillier, S.L.; Marrazzo, J.; McGowan, I.; Richardson, B.A.; Herold, B.C. Soluble immune mediators and vaginal bacteria impact innate genital mucosal antimicrobial activity in young women. Am. J. Reprod. Immunol. 2015, 74, 323–332. [Google Scholar] [CrossRef]
- Efficacy and Safety Study of SPL7013 Gel to Prevent the Recurrence of Bacterial Vaginosis (BV). Available online: https://clinicaltrials.gov/ct2/show/NCT02237950 (accessed on 5 January 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apartsin, E.; Caminade, A.-M. Single-Component Physical Hydrogels of Dendritic Molecules. J. Compos. Sci. 2023, 7, 26. https://doi.org/10.3390/jcs7010026
Apartsin E, Caminade A-M. Single-Component Physical Hydrogels of Dendritic Molecules. Journal of Composites Science. 2023; 7(1):26. https://doi.org/10.3390/jcs7010026
Chicago/Turabian StyleApartsin, Evgeny, and Anne-Marie Caminade. 2023. "Single-Component Physical Hydrogels of Dendritic Molecules" Journal of Composites Science 7, no. 1: 26. https://doi.org/10.3390/jcs7010026
APA StyleApartsin, E., & Caminade, A.-M. (2023). Single-Component Physical Hydrogels of Dendritic Molecules. Journal of Composites Science, 7(1), 26. https://doi.org/10.3390/jcs7010026