Three-Dimensional Thermo-Mechanical Elastic Analysis of Functionally Graded Five Layers Composite Sandwich Plate on Winkler Foundations
Abstract
:1. Introduction
2. Problem Formulation
3. Numerical Results and Discussions
3.1. Three-Layers Sandwich Plate
3.2. Five-Layer FGM Sandwich Plate
3.3. Numerical Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Width of the plate | |
elements of matrices for the kth layer | |
Length of the plate | |
, | Elastic modules of the metal and ceramic phases, respectively. |
Density of foundation reaction force | |
Shear Modulus | |
Total thickens of the sandwich plate | |
Cover sheet thickness | |
Adhesive thickness | |
Core thickness | |
Layer number | |
elastic foundation stiffness | |
Moment resultants for the kth layer | |
Force resultants for the kth layer | |
n | Power law index |
Material properties of the ceramic phase | |
Material properties of the metal phase | |
Uniform distributed load | |
The elements of the stiffness matrix | |
stiffness of core | |
stiffness of skin | |
Transverse shear stress results for the kth layer | |
Ratio stiffness of skin to stiffness of the core | |
T | Surrounding temperature |
U | Strain energy |
Displacement component in x-direction | |
Strain energy of the foundation | |
Virtual strain energy | |
Displacement component in the y direction | |
Volume fraction of the ceramic phase within the face sheet | |
Displacement component in the z-direction | |
Dimensionless displacement component in the z-direction | |
z | Thickness direction |
Coefficient of expansion thermal for Elastollan R3000 core or vinyl ester | |
Coefficients of expansion thermal for the metal and ceramic phases, respectively. | |
Strain components in the kth layer | |
Shear correction factor | |
Poisson ratio of Elastollan R3000 core or vinyl ester | |
Poisson’s ratios of the ceramic and metal phases, respectively. | |
Stress components in the kth layer | |
Dimensionless Stress components | |
Shear Stress components in the kth layer | |
Dimensionless Shear Stress components | |
material volume | |
rotations of the normal lines to the midplane about the y-axis | |
rotations of the normal lines to the midplane about the x-axis. |
Appendix A
References
- Koizumi, M. FGM activities in Japan. Compos. Part B Eng. 1997, 28, 1–4. [Google Scholar] [CrossRef]
- Nguyen-Xuan, H.; Tran, L.V.; Nguyen-Thoi, T.; Vu-Do, H. Analysis of functionally graded plates using an edge-based smoothed finite element method. Compos. Struct. 2011, 93, 3019–3039. [Google Scholar] [CrossRef]
- Kerr, A.D. Elastic and Viscoelastic Foundation Models. J. Appl. Mech. 1964, 31, 491–498. [Google Scholar] [CrossRef]
- Benferhat, R.; Daouadji, T.H.; Mansour, M.S. Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory. Comptes Rendus Mec. 2016, 344, 631–641. [Google Scholar] [CrossRef]
- Mantari, J.; Granados, E. A refined FSDT for the static analysis of functionally graded sandwich plates. Thin-Walled Struct. 2015, 90, 150–158. [Google Scholar] [CrossRef]
- Zenkour, A.M. The refined sinusoidal theory for FGM plates on elastic foundations. Int. J. Mech. Sci. 2009, 51, 869–880. [Google Scholar] [CrossRef]
- Thai, H.-T.; Nguyen, T.-K.; Vo, T.P.; Lee, J. Analysis of functionally graded sandwich plates using a new first-order shear deformation theory. Eur. J. Mech. A/Solids 2014, 45, 211–225. [Google Scholar] [CrossRef] [Green Version]
- Thai, H.-T.; Choi, D.-H. A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos. Struct. 2013, 101, 332–340. [Google Scholar] [CrossRef]
- Natarajan, S.; Manickam, G. Bending and vibration of functionally graded material sandwich plates using an accurate theory. Finite Elements Anal. Des. 2012, 57, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.J.; Wang, L.L.; Du, H.Y. Analysis of Heating Steady Temperature Field in an Al1100/Ti-6Al-4V/SiC 2D-FGM Plane Plate by FEM. Key Eng. Mater. 2011, 450, 235–238. [Google Scholar] [CrossRef]
- Ferreira, A.; Fasshauer, G.; Batra, R.; Rodrigues, J. Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 2008, 86, 328–343. [Google Scholar] [CrossRef]
- Kapuria, S.; Achary, G. An efficient higher order zigzag theory for laminated plates subjected to thermal loading. Int. J. Solids Struct. 2004, 41, 4661–4684. [Google Scholar] [CrossRef]
- Shodja, H.; HaftBaradaran, H.; Asghari, M. A thermoelasticity solution of sandwich structures with functionally graded coating. Compos. Sci. Technol. 2006, 67, 1073–1080. [Google Scholar] [CrossRef]
- Garg, N.; Karkhanis, R.S.; Sahoo, R.; Maiti, P.R.; Singh, B.N. Trigonometric zigzag theory for static analysis of laminated composite and sandwich plates under hygro-thermo-mechanical loading. Compos. Struct. 2018, 209, 460–471. [Google Scholar] [CrossRef]
- Mechab, B.; Mechab, I.; Benaissa, S. Composites: Part B Analysis of thick orthotropic laminated composite plates based on higher order shear deformation theory by the new function under thermo-mechanical loading. Compos. Part B 2012, 43, 1453–1458. [Google Scholar] [CrossRef]
- Moleiro, F.; Correia, V.F.; Ferreira, A.; Reddy, J. Fully coupled thermo-mechanical analysis of multilayered plates with embedded FGM skins or core layers using a layerwise mixed model. Compos. Struct. 2018, 210, 971–996. [Google Scholar] [CrossRef]
- Raissi, H.; Shishesaz, M.; Moradi, S. Applications of higher order shear deformation theories on stress distribution in a five layer sandwich plate. Appl. Comput. Mech. 2017, 48, 233–252. [Google Scholar] [CrossRef]
- Kardooni, M.R.; Shishesaz, M.; Moradi, S.; Mosalmani, R. Free Vibrational Analysis of a Functionally Graded Five-Layer Sandwich Plate Resting on a Winkler Elastic Foundation in a Thermal Environment. J. Compos. Sci. 2022, 6, 325. [Google Scholar] [CrossRef]
- Shishehsaz, M.; Raissi, H.; Moradi, S. Stress distribution in a five-layer circular sandwich composite plate based on the third and hyperbolic shear deformation theories. Mech. Adv. Mater. Struct. 2019, 27, 927–940. [Google Scholar] [CrossRef]
- Tounsi, A.; Houari, M.S.A.; Benyoucef, S.; Bedia, E.A.A. A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci. Technol. 2013, 24, 209–220. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Benyoucef, S.; Tounsi, A.; Benachour, A.; Bedia, E.A.A.; Mahmoud, S. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. J. Sandw. Struct. Mater. 2017, 21, 1906–1929. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, R.; Ai, S.; He, R.; Pei, Y.; Fang, D. Load distribution in threads of porous metal–ceramic functionally graded composite joints subjected to thermomechanical loading. J. Compos. Struct. 2015, 134, 680–688. [Google Scholar] [CrossRef] [Green Version]
- Miteva, A.; Bouzekova-Penkova, A. Module for wireless communication in aerospace vehicles. Aerosp. Res. Bulg. 2021, 33, 195–209. [Google Scholar] [CrossRef]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
- Birman, V.; Bert, C.W. On the Choice of Shear Correction Factor in Sandwich Structures. J. Sandw. Struct. Mater. 2002, 4, 83–95. [Google Scholar] [CrossRef]
- Srinivas, S.; Rao, A. Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct. 1970, 6, 1463–1481. [Google Scholar] [CrossRef]
- Ferreira, A. Analysis of Composite Plates Using a Layerwise Theory and Multiquadrics Discretization. Mech. Adv. Mater. Struct. 2005, 12, 99–112. [Google Scholar] [CrossRef]
- Plaseied, A.; Fatemi, A. Deformation response and constitutive modeling of vinyl ester polymer including strain rate and temperature effects. J. Mater. Sci. 2008, 43, 1191–1199. [Google Scholar] [CrossRef]
- Elastollan BASF Company, Ellastollan Physical and Mechanical Properties Manual Book of Thermoplastic Polyuerthane Elastomers(TPU), Ellastollan@Product Range. Available online: www.elastollan.de (accessed on 1 November 2022).
- Kahya, V.; Turan, M. Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element. Compos. Part B Eng. 2018, 146, 198–212. [Google Scholar] [CrossRef]
- Ziaee, S.; Palmese, G.R. Effects of temperature on cure kinetics and mechanical properties of vinyl-ester resins. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 725–744. [Google Scholar] [CrossRef]
- Liao, S.-H.; Hung, C.-H.; Ma, C.-C.M.; Yen, C.-Y.; Lin, Y.-F.; Weng, C.-C. Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources 2008, 176, 175–182. [Google Scholar] [CrossRef]
R | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 | Exact [26] | 258.97 | 60.353 | 46.623 | 9.3402 | 38.49 | 30.097 | 6.161 | 3.2675 |
Ferreira [27] | 257.523 | 59.9675 | 46.2906 | 9.258 | 38.321 | 29.974 | 5.9948 | 2.3901 | |
FE | 250.8 | 57.26 | 45 | 8.56 | 36.45 | 28.97 | 5.5 | 3.346 | |
%Difference | 3.2 | 5.1 | 3.5 | 8.4 | 5.3 | 3.7 | 10.8 | 2.4 |
Elastic Modulus of Vinyl Ester (GPa) | Temperature (°C) |
---|---|
3.4 | RT |
3.13 | 50 |
2.8 | 75 |
2.5 | 100 |
Temperature (°C) | |
---|---|
2.8 | RT |
1.94 | 50 |
1.75 | 75 |
1.52 | 100 |
Constituent | Mechanical Properties |
---|---|
(Elastollan-R3000) core [29] | |
Face sheet () [30] ) as ceramic | |
Vinyl ester [31,32] |
Points Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Location | Core | Face Sheet | Adhesive | Adhesive | Core | Face Sheet | Adhesive | Core |
0 |
T °C | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
23 | FE | −1.220 | −6.51 | −0.3838 | −0.36471 | −0.3647 | 39.103 | −0.8033 | −0.8057 |
LW | −1.278 | −5.023 | −0.2732 | −0.2573 | −0.24082 | 38.9 | −1.0214 | −1.0214 | |
%Difference | 4.8 | 22.8 | 28.8 | 29.4 | 34 | 6.5 | 27.2 | 26.8 | |
50 | FE | −1.3865 | −46.897 | −6.807 | −6.5249 | −2.368 | 105.445 | −1.0356 | −1.08477 |
LW | −1.5159 | −45.125 | −5.930 | −5.918 | −1.236 | 70.2 | 0.4850 | 0.4850 | |
%Difference | 9.3 | 5.1 | 12.9 | 9.3 | 47.8 | 33.4 | 53.2 | 55.3 | |
75 | FE | −1.4460 | −83.720 | −11.483 | −11 | −3.939 | 159.372 | −1.2323 | −1.3109 |
LW | −1.602 | −82.50 | −10.018 | −10.013 | −2.017 | 97.93 | 1.604 | 1.604 | |
%Difference | 10.8 | 1.5 | 12.7 | 9 | 48.8 | 38.5 | 30.2 | 22.3 | |
100 | FE | −1.538 | −119.45 | −15.01 | −14.387 | −5.0378 | 209.8 | −1.3446 | −1.4836 |
LW | −1.7322 | −120 | −13.159 | −13.158 | −2.538 | 124.89 | 2.390 | 2.390 | |
%Difference | 12.6 | 0.5 | 12.3 | 8.5 | 49.6 | 40.5 | 77.7 | 61.1 |
Kw (N/M2) | Method | ||||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
0 | FE | −6.930 | −72.936 | −8.239 | −7.878 | −3.466 | 286.13 | −4.191 | −4.243 |
LW | −7.580 | −64.47 | −6.898 | −6.817 | −1.869 | 229.1 | −3.581 | −3.581 | |
%Difference | 9.4 | 11.6 | 16.3 | 13.5 | 46.1 | 19.9 | 14.6 | 15.6 | |
108 | FE | −6.329 | −70.06 | −8.108 | −7.756 | −3.382 | 265.86 | −3.915 | −3.967 |
LW | −6.849 | −62.18 | −6.784 | −6.712 | −1.795 | 208.84 | −3.292 | −3.292 | |
%Difference | 8.2 | 11.2 | 16.1 | 13.5 | 41.5 | 21.5 | 15.9 | 17 | |
109 | FE | −3.505 | −56.842 | −7.489 | −7.181 | −2.987 | 170.94 | −2.597 | −2.646 |
LW | −3.588 | −51.942 | −6.271 | −6.240 | −1.462 | 119.25 | −1.896 | −1.896 | |
%Difference | 2.4 | 8.1 | 17 | 13.1 | 51.1 | 30.2 | 27 | 28.3 |
n | Method | (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
0.5 | FE | −6.239 | −88.545 | −8.185 | −7.831 | −3.439 | 233.27 | −3.853 | −3.923 |
LW | −7.014 | −63.25 | −6.838 | −6.770 | −1.836 | 180.07 | −3.206 | −3.206 | |
%Difference | 12.4 | 28.6 | 16.5 | 13.5 | 46.6 | 22.5 | 16.6 | 18.1 | |
1 | FE | −6.930 | −72.936 | −8.239 | −7.878 | −3.466 | 286.13 | −4.191 | −4.243 |
LW | −7.580 | −64.47 | −6.898 | −6.817 | −1.869 | 229.1 | −3.581 | −3.581 | |
%Difference | 9.4 | 11.6 | 16.3 | 15.6 | 46.1 | 19.9 | 14.6 | 15.6 | |
2 | FE | −8.057 | −73.345 | −8.418 | −8.048 | −3.554 | 357.55 | −4.469 | −4.510 |
LW | −8.536 | −68.337 | −7.091 | −6.99 | −1.991 | 299.2 | −3.97 | −3.97 | |
%Difference | 5.9 | 6.8 | 15.7 | 13.1 | 44 | 16.3 | 11.2 | 10 |
Method | (m) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
10 | FE | −0.19316 | −67.758 | −11.398 | −10.272 | −3.849 | 91.718 | −2.5096 | −2.4489 |
LW | −0.26121 | −78.487 | −9.838 | −9.845 | −1.845 | 70.338 | 2.739 | 2.739 | |
%Difference | 35.2 | 15.8 | 13.7 | 4.2 | 50.7 | 23.3 | 9.1 | 10.6 | |
20 | FE | −1.4460 | −83.720 | −11.483 | −11 | −3.939 | 159.372 | −1.2323 | −1.3109 |
LW | −1.602 | −82.50 | −10.018 | −10.013 | −2.017 | 97.93 | 1.604 | 1.604 | |
%Difference | 10.8 | 1.5 | 12.7 | 9 | 48.8 | 38.5 | 30.2 | 22.3 | |
30 | FE | −5.601 | −94.76 | −11.677 | −11.325 | −3.979 | 219.16 | −1.1714 | −1.2947 |
LW | −5.566 | −89.38 | −10.327 | −10.302 | −2.222 | 144.640 | −0.48 | −0.48 | |
%Difference | 1.1 | 5.7 | 11.6 | 9 | 44.2 | 34 | 50.5 | 62.9 |
, h (mm) | Method | (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
0.1 12 | FE | −1.446 | −83.720 | −11.483 | −11 | −3.939 | 159.37 | −1.2323 | −1.3109 |
LW | −1.602 | −82.50 | −10.018 | −10.013 | −2.017 | 97.93 | 1.604 | 1.604 | |
%Difference | 10.8 | 1.5 | 12.7 | 9 | 48.8 | 38.5 | 30.2 | 22.3 | |
0.15 13.2 | FE | −1.010 | −75.319 | −11.604 | −11.063 | −4.296 | 127.47 | −1.381 | −1.3489 |
LW | −1.184 | −80.47 | −9.927 | −9.926 | −1.955 | 83.19 | 1.635 | 1.635 | |
%Difference | 17.3 | 6.8 | 14.4 | 10.3 | 54.5 | 34.7 | 18.4 | 13.6 | |
0.2 14.2 | FE | −0.77110 | −69.78 | −11.683 | −11.119 | −4.544 | 108.64 | −1.4667 | −1.5206 |
LW | −0.9424 | −79.48 | −9.882 | −9.884 | −1.925 | 76.03 | 1.621 | 1.621 | |
%Difference | 22.2 | 13.9 | 15.4 | 11.1 | 57.6 | 30 | 10.5 | 6.6 |
, h (mm) | Method | (m) | |||||||
---|---|---|---|---|---|---|---|---|---|
Point 1 | Point 2 | Point 3 | Point 4 | Point 5 | Point 6 | Point 7 | Point 8 | ||
0.1 12 | FE | −6.930 | −72.936 | −8.239 | −7.878 | −3.466 | 286.13 | −4.191 | −4.243 |
LW | −7.580 | −64.47 | −68.98 | −6.817 | −1.869 | 229.1 | −3.581 | −3.581 | |
%Difference | 9.4 | 11.6 | 16.3 | 13.5 | 46.1 | 19.9 | 14.5 | 15.6 | |
0.15 13.2 | FE | −4.804 | −55.362 | −7.682 | −7.318 | −3.247 | 203.71 | −3.925 | −3.962 |
LW | −5.554 | −52.20 | −6.283 | −6.236 | −1.459 | 164.6 | −3.115 | −3.115 | |
%Difference | 15.6 | 5.8 | 18.2 | 14.8 | 55 | 19.2 | 20.6 | 21.4 | |
0.2 14.4 | FE | −3.650 | −45.84 | −7.409 | −7.047 | −3.173 | 160.31 | −3.670 | −3.698 |
LW | −4.395 | −46.07 | −5.976 | −5.944 | −1.254 | 132.82 | −2.708 | −2.708 | |
%Difference | 20.4 | 0.5 | 19.3 | 14.9 | 60.5 | 17.1 | 26.2 | 26.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kardooni, M.R.; Shishesaz, M.; Mosalmani, R. Three-Dimensional Thermo-Mechanical Elastic Analysis of Functionally Graded Five Layers Composite Sandwich Plate on Winkler Foundations. J. Compos. Sci. 2022, 6, 372. https://doi.org/10.3390/jcs6120372
Kardooni MR, Shishesaz M, Mosalmani R. Three-Dimensional Thermo-Mechanical Elastic Analysis of Functionally Graded Five Layers Composite Sandwich Plate on Winkler Foundations. Journal of Composites Science. 2022; 6(12):372. https://doi.org/10.3390/jcs6120372
Chicago/Turabian StyleKardooni, Mohammad Reza, Mohammad Shishesaz, and Reza Mosalmani. 2022. "Three-Dimensional Thermo-Mechanical Elastic Analysis of Functionally Graded Five Layers Composite Sandwich Plate on Winkler Foundations" Journal of Composites Science 6, no. 12: 372. https://doi.org/10.3390/jcs6120372
APA StyleKardooni, M. R., Shishesaz, M., & Mosalmani, R. (2022). Three-Dimensional Thermo-Mechanical Elastic Analysis of Functionally Graded Five Layers Composite Sandwich Plate on Winkler Foundations. Journal of Composites Science, 6(12), 372. https://doi.org/10.3390/jcs6120372