# A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Methodology

#### 2.1. Material Configuration and Specimen Preparation

#### 2.2. Experimental Setup and Testing Program

## 3. Experimental Results

#### 3.1. Stress–Strain Behaviour and Experimental Classification

#### 3.2. Failure and Fracture Behaviour

## 4. Material Modelling and Property Identification

- data driven (DD): A closed formulation describing the entire experimental curves by coherent formulae with the determining parameters being the material’s characteristics.

#### 4.1. Modulus and Strength Based (MaS) Approach

#### 4.1.1. Determination of Engineering Constants

#### 4.1.2. Strain Rate Dependency and Model Parameters

^{−4}and 3$\raisebox{1ex}{$\mathrm{1}$}\!\left/ \!\raisebox{-1ex}{$\mathrm{s}$}\right.$.

#### 4.2. Data Driven (DD) Approach

#### 4.2.1. Determination of Material Characteristics

#### 4.2.2. Modelling of the Strain Rate Dependency

#### 4.3. Determining the Range of Validity of the Material Modelling Approaches

## 5. Discussion

#### 5.1. Strain Rate and Configuration Dependent Experimental Characterisation

#### 5.2. Presented Modelling Approaches

#### 5.2.1. Modulus and Strength Based (MaS) Approach

#### 5.2.2. Data Driven (DD) Approach

#### 5.3. Interpretability of the Nonlinearities

## 6. Conclusions and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

DD | data driven |

DIC | digital image correlation |

FEA | finite element analysis |

FRP | fibre reinforced plastic |

GF/PP | E-glass fibre polypropylene |

MaS | modulus and strength based |

MKF | multi-layered weft knitted fabric |

PP | polypropylene |

ROI | region of interest |

SHPB | split Hopkinson pressure bar |

TT | through thickness |

## References

- Sarfraz, M.S.; Hong, H.; Kim, S.S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct.
**2021**, 266, 113864. [Google Scholar] [CrossRef] - Böhm, R.; Hornig, A.; Weber, T.; Grüber, B.; Gude, M. Experimental and Numerical Impact Analysis of Automotive Bumper Brackets Made of 2D Triaxially Braided CFRP Composites. Materials
**2020**, 13, 3554. [Google Scholar] [CrossRef] [PubMed] - Zimmermann, N.; Wang, P.H. A review of failure modes and fracture analysis of aircraft composite materials. Eng. Fail. Anal.
**2020**, 115, 104692. [Google Scholar] [CrossRef] - Haufe, A.; Cavariani, S.; Liebold, C.; Usta, T.; Kotzakolios, T.; Giannaros, E.; Kostopoulos, V.; Hornig, A.; Gude, M.; Djordjevic, N.; et al. On Composite Model Calibration for Extreme Impact Loading Exemplified on Aerospace Structures. In Proceedings of the 16th LS-Dyna International Users Conference, Aerospace, LSTC-Ansys, Virtual Event, 10–11 June 2020. [Google Scholar]
- Olsson, R. A survey of test methods for multiaxial and out-of-plane strength of composite laminates. Compos. Sci. Technol.
**2011**, 71, 773–783. [Google Scholar] [CrossRef] - Gude, M.; Schirner, R.; Weck, D.; Dohmen, E.; Andrich, M. Through-thickness compression testing of fabric reinforced composite materials: Adapted design of novel compression stamps. Polym. Test.
**2016**, 56, 269–276. [Google Scholar] [CrossRef] - Kanno, T.; Kurita, H.; Suzuki, M.; Tamura, H.; Narita, F. Numerical and Experimental Investigation of the Through-Thickness Strength Properties of Woven Glass Fiber Reinforced Polymer Composite Laminates under Combined Tensile and Shear Loading. J. Compos. Sci.
**2020**, 4, 112. [Google Scholar] [CrossRef] - Jalali, S.J.; Taheri, F. A New Test Method for Measuring the Longitudinal and Shear Moduli of Fiber Reinforced Composites. J. Compos. Mater.
**1999**, 33, 2134–2160. [Google Scholar] [CrossRef] - Yoneyama, S.; Ifju, P.G.; Rohde, S.E. Identifying through-thickness material properties of carbon-fiber-reinforced plastics using the virtual fields method combined with moiré interferometry. Adv. Compos. Mater.
**2018**, 27, 1–17. [Google Scholar] [CrossRef] - Gude, M.; Hufenbach, W.; Andrich, M.; Mertel, A.; Schirner, R. Modified V-notched rail shear test fixture for shear characterisation of textile-reinforced composite materials. Polym. Test.
**2015**, 43, 147–153. [Google Scholar] [CrossRef] - Stojcevski, F.; Hilditch, T.; Henderson, L.C. A modern account of Iosipescu testing. Compos. Part Appl. Sci. Manuf.
**2018**, 107, 545–554. [Google Scholar] [CrossRef] - Guseinov, K.; Kudryavtsev, O.; Bezmelnitsyn, A.; Sapozhnikov, S. Determination of Interlaminar Shear Properties of Fibre-Reinforced Composites under Biaxial Loading: A New Experimental Approach. Polymers
**2022**, 14, 2575. [Google Scholar] [CrossRef] [PubMed] - Hsiao, H.M.; Daniel, I.M.; Cordes, R.D. Strain Rate Effects on the Transverse Compressive and Shear Behavior of Unidirectional Composites. J. Compos. Mater.
**1999**, 33, 1620–1642. [Google Scholar] [CrossRef] - Zhao, Z.; Liu, P.; Dang, H.; Nie, H.; Guo, Z.; Zhang, C.; Li, Y. Effects of loading rate and loading direction on the compressive failure behavior of a 2D triaxially braided composite. Int. J. Impact Eng.
**2021**, 156, 103928. [Google Scholar] [CrossRef] - Hufenbach, W.; Langkamp, A.; Hornig, A.; Zscheyge, M.; Bochynek, R. Analysing and modelling the 3D shear damage behaviour of hybrid yarn textile-reinforced thermoplastic composites. Compos. Struct.
**2011**, 94, 121–131. [Google Scholar] [CrossRef] - Hufenbach, W.; Langkamp, A.; Gude, M.; Ebert, C.; Hornig, A.; Nitschke, S.; Böhm, H. Characterisation of Strain rate Dependent Material Properties of Textile Reinforced Thermoplastics for Crash and Impact Analysis. Procedia Mater. Sci.
**2013**, 2, 204–211. [Google Scholar] [CrossRef] - Hassan, J.; O’Higgins, R.M.; McCarthy, C.T.; Toso, N.; McCarthy, M.A. Mesoscale modelling of extended bearing failure in tension-absorber joints. Int. J. Mech. Sci.
**2020**, 182, 105777. [Google Scholar] [CrossRef] - Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech.
**1985**, 21, 31–48. [Google Scholar] [CrossRef] - Zscheyge, M.; Böhm, R.; Hornig, A.; Gerritzen, J.; Gude, M. Rate dependent nonlinear mechanical behaviour of continuous fibre-reinforced thermoplastic composites – Experimental characterisation and viscoelastic-plastic damage modelling. Mater. Des.
**2020**, 193, 108827. [Google Scholar] [CrossRef] - Böhm, R.; Gude, M.; Hufenbach, W. A phenomenologically based damage model for textile composites with crimped reinforcement. Compos. Sci. Technol.
**2010**, 70, 81–87. [Google Scholar] [CrossRef] - Gude, M.; Hufenbach, W.; Ebert, C. The strain-rate-dependent material and failure behaviour of 2D and 3D non-crimp glass-fibre-reinforced composites. Mech. Compos. Mater.
**2009**, 45, 467–476. [Google Scholar] [CrossRef] - Diestel, O.; Godau, U.; Offermann, P. Biaxially reinforced multilayer weft knitted fabrics - a new textile structure for composite reinforcement. In Proceedings of the 30th International SAMPE Technical Conference, San Antonio, TX, USA, 21–24 October 1998; pp. 40–47. [Google Scholar]
- Hufenbach, W.; Gude, M.; Ebert, C.; Zscheyge, M.; Hornig, A. Strain rate dependent low velocity impact response of layerwise 3D-reinforced composite structures. Int. J. Impact Eng.
**2011**, 38, 358–368. [Google Scholar] [CrossRef] - ASTM D5379/D5379M-19e1; Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International: West Conshohocken, PA, USA, 2019. [CrossRef]
- DIN EN ISO 14129:1998-02; Fibre-Reinforced Plastic Composites—Determination of the In-Plane Shear Stress/Shear Strain Response, Including the In-Plane Shear Modulus and Strength, by ±45° Tension Test Method (ISO 14129:1997). Beuth Verlag: Berlin, Germany, 1998. [CrossRef]
- Pantalé, O.; Bacaria, J.L.; Dalverny, O.; Rakotomalala, R.; Caperaa, S. 2D and 3D numerical models of metal cutting with damage effects. Comput. Methods Appl. Mech. Eng.
**2004**, 193, 4383–4399. [Google Scholar] [CrossRef] - Krasauskas, P.; Kilikevičius, S.; Česnavičius, R.; Pačenga, D. Experimental analysis and numerical simulation of the stainless AISI 304 steel friction drilling process. Mechanics
**2014**, 20, 590–595. [Google Scholar] [CrossRef] - Wang, Y.t.; He, Y.t.; Zhang, T.; Fan, X.h.; Zhang, T.y. Damage analysis of typical structures of aircraft under high-velocity fragments impact. Alex. Eng. J.
**2023**, 62, 431–443. [Google Scholar] [CrossRef] - Fedulov, B.N.; Fedorenko, A.N.; Kantor, M.M.; Lomakin, E.V. Failure analysis of laminated composites based on degradation parameters. Meccanica
**2018**, 53, 359–372. [Google Scholar] [CrossRef] - Martínez-Hergueta, F.; Ares, D.; Ridruejo, A.; Wiegand, J.; Petrinic, N. Modelling the in-plane strain rate dependent behaviour of woven composites with special emphasis on the nonlinear shear response. Compos. Struct.
**2019**, 210, 840–857. [Google Scholar] [CrossRef] - Kvålseth, T.O. Cautionary Note about R2. Am. Stat.
**1985**, 39, 279–285. [Google Scholar] [CrossRef] - Fritsch, J.; Hiermaier, S.; Strobl, G. Characterizing and modeling the nonlinear viscoelastic tensile deformation of a glass fiber reinforced polypropylene. Compos. Sci. Technol.
**2009**, 69, 2460–2466. [Google Scholar] [CrossRef] - Hufenbach, W.; Langkamp, A.; Hornig, A.; Ebert, C. Experimental determination of the strain rate dependent outof-plane shear properties of textile-reinforced composites. In Proceedings of the 17th International Conference on Composite Materials, Edinburgh, UK, 27–32 July 2009. [Google Scholar]
- Kästner, M. Skalenübergreifende Modellierung und Simulation des Mechanischen Verhaltens von Textilverstärktem Polypropylen unter Nutzung der XFEM. Ph.D. Thesis, Technische Universität, Dresden, Germany, 30 June 2009. [Google Scholar]
- Shen, H.; Yao, W.; Qi, W.; Zong, J. Experimental investigation on damage evolution in cross-ply laminates subjected to quasi-static and fatigue loading. Compos. Part B Eng.
**2017**, 120, 10–26. [Google Scholar] [CrossRef] - Yarysheva, A.Y.; Bagrov, D.V.; Bakirov, A.V.; Yarysheva, L.M.; Chvalun, S.N.; Volynskii, A.L. Effect of initial polypropylene structure on its deformation via crazing mechanism in a liquid medium. Eur. Polym. J.
**2018**, 100, 233–240. [Google Scholar] [CrossRef] - Pakdel, H.; Mohammadi, B. Characteristic damage state of symmetric laminates subject to uniaxial monotonic-fatigue loading. Eng. Fract. Mech.
**2018**, 199, 86–100. [Google Scholar] [CrossRef] - Imaddahen, M.A.; Shirinbayan, M.; Ayari, H.; Foucard, M.; Tcharkhtchi, A.; Fitoussi, J. Multi–scale analysis of short glass fiber–reinforced polypropylene under monotonic and fatigue loading. Polym. Compos.
**2020**, 41, 4649–4662. [Google Scholar] [CrossRef] - Flatscher, T.; Pettermann, H.E. A constitutive model for fiber-reinforced polymer plies accounting for plasticity and brittle damage including softening – Implementation for implicit FEM. Compos. Struct.
**2011**, 93, 2241–2249. [Google Scholar] [CrossRef] - Just, G.; Koch, I.; Brod, M.; Jansen, E.; Gude, M.; Rolfes, R. Influence of Reversed Fatigue Loading on DamageEvolution of Cross-Ply Carbon Fibre Composites. Materials
**2019**, 12, 1153. [Google Scholar] [CrossRef] - Just, G.; Koch, I.; Gude, M. Experimental Analysis of Matrix Cracking in Glass Fiber Reinforced Composite Off-Axis Plies under Static and Fatigue Loading. Polymers
**2022**, 14, 2160. [Google Scholar] [CrossRef] [PubMed] - Ebert, C.; Hufenbach, W.; Langkamp, A.; Gude, M. Modelling of strain rate dependent deformation behaviour of polypropylene. Polym. Test.
**2011**, 30, 183–187. [Google Scholar] [CrossRef] - Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods
**2020**, 17, 261–272. [Google Scholar] [CrossRef] - Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng.
**2007**, 9, 90–95. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Specimen configurations with respect to the fibre reinforcement plane and (

**b**) the corresponding stress states during Iosipescu testing [15].

**Figure 2.**Iosipescu shear test setup: (

**a**) specimen with undeformed (before) and deformed (after the experiment) specimen; (

**b**) representative strain distribution from DIC with the chosen ROI for further analysis.

**Figure 4.**Post-experimental images of representative deformation and failure patterns for the investigated material configurations.

**Figure 5.**Strain rate dependency of exemplary shear modulus ${G}_{0.55\%}^{sec}$ and ${\tau}^{max}$ for different material configurations.

**Figure 6.**Mas model predictions for secant moduli and maximum shear stress, exemplary for the 12-configuration at lowest and highest investigated strain rates.

**Figure 8.**Juxtaposition of experimental results and corresponding model predictions with parameters based on standard and constrained regression.

**Figure 11.**Comparison of models predicting onset and saturation of significant nonlinearity for the 12-configuration.

**Figure 12.**Summary of the onset and saturation points of significant nonlinearity for the 12-configuration.

Loading | Strain Rate $\dot{\mathit{\gamma}}$ | Sampling | Tests Per | ||
---|---|---|---|---|---|

Velocity [$\raisebox{1ex}{$\mathbf{m}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | 12-conf. [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | 13-conf. [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | 31-conf. [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | [$\mathbf{frames}/\mathbf{s}$] | Velocity |

0.00001 | 2.2 × 10^{−4} * | 2.4 × 10^{−4} | 3.5 × 10^{−4} | 1 | 12 |

0.0001 | 3.6 × 10^{−3} | 3.5 × 10^{−3} | 2.9 × 10^{−3} | 25 | 12 |

0.01 | 2.8 × 10^{−1} | 3.4 × 10^{−1} | 3.0 × 10^{−1} | 5000 | 12 |

0.1 | 3.0 | 3.4 | 2.4 | 50,000 | 9 |

Tests per conf. | 15 | 15 | 15 |

^{*}In one experiment, the strain measurement was not triggered. It is excluded from the further analyses.

${\mathit{G}}^{\mathit{sec}}$ [GPa] | ${\mathit{G}}^{\mathit{tan}}$ [GPa] | $\mathit{\tau}$ [MPa] | |||
---|---|---|---|---|---|

$\dot{\mathit{\gamma}}$ [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | 0.55% | 1% | 2% | 5% | max |

12-configuration | |||||

2.2 × 10^{−4} | 1.4 | 1.3 | 1.0 | 0.3 | 48.4 |

3.6 × 10^{−3} | 1.8 | 1.5 | 1.1 | 0.2 | 56.4 |

2.8 × 10^{−1} | 2.4 | 1.9 | 1.4 | 0.4 | 65.0 |

3.0 | 2.5 | 1.9 | 1.5 | 0.6 | 72.3 |

13-configuration | |||||

2.4 × 10^{−4} | 1.2 | 1.0 | 0.6 | 0.07 | 22.6 |

3.5 × 10^{−3} | 1.2 | 1.0 | 0.7 | 0.12 | 25.4 |

3.4 × 10^{−1} | 1.4 | 1.1 | 0.8 | 0.11 | 29.4 |

3.4 | 1.6 | 1.2 | 0.9 | 0.14 | 34.1 |

31-configuration | |||||

3.5 × 10^{−4} | 1.1 | 0.8 | 0.6 | -${}^{*}$ | 12.1 |

3.7 × 10^{−3} | 1.4 | 1.1 | 1.0 | -${}^{*}$ | 15.9 |

2.6 × 10^{−1} | 1.6 | 1.2 | 1.1 | -${}^{*}$ | 17.5 |

2.6 | 2.0 | 1.6 | 1.4 | -${}^{*}$ | 21.9 |

^{*}Strain of 5% has not been reached.

${\dot{\mathit{\gamma}}}_{\mathit{ref}}$ [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | ${\mathit{G}}_{0.55\%,\mathit{ref}}^{\mathit{sec}}$ [MPa] | ${\mathit{\tau}}_{\mathit{ref}}^{\mathit{max}}$ [MPa] | ${\mathit{A}}^{\mathit{G}}$$[-]$ | ${\mathit{A}}^{\mathit{\tau}}$$[-]$ | |
---|---|---|---|---|---|

12-conf. | 2.2 × 10^{−4} | 1.4 | 48.4 | 0.09 | 0.05 |

13-conf. | 3.0 × 10^{−4} | 1.2 | 22.6 | 0.045 | 0.05 |

31-conf. | 12.1 | 0.08 |

${\dot{\mathit{\gamma}}}_{\mathit{ref}}$ [$\raisebox{1ex}{$\mathbf{1}$}\!\left/ \!\raisebox{-1ex}{$\mathbf{s}$}\right.$] | ${\mathit{G}}_{0,\mathit{ref}}^{\mathit{tan}}$ [MPa] | ${\mathit{a}}_{\mathit{ref}}$$[-]$ | ${\mathit{A}}^{\mathit{G}}$$[-]$ | ${\mathit{A}}^{\mathit{a}}$$[-]$ | |
---|---|---|---|---|---|

12-conf. | 2.2 × 10^{−4} | 1372.48 | 29.30 | 0.090 | 0.032 |

13-conf. | 2.4 × 10^{−4} | 1463.62 | 67.29 | 0.113 | 0.031 |

31-conf. | 3.4 × 10^{−4} | 2670.44 | 220.35 | −0.029 | −0.081 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gerritzen, J.; Hornig, A.; Gröger, B.; Gude, M. A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters. *J. Compos. Sci.* **2022**, *6*, 318.
https://doi.org/10.3390/jcs6100318

**AMA Style**

Gerritzen J, Hornig A, Gröger B, Gude M. A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters. *Journal of Composites Science*. 2022; 6(10):318.
https://doi.org/10.3390/jcs6100318

**Chicago/Turabian Style**

Gerritzen, Johannes, Andreas Hornig, Benjamin Gröger, and Maik Gude. 2022. "A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters" *Journal of Composites Science* 6, no. 10: 318.
https://doi.org/10.3390/jcs6100318