Tribological Characterization of Carbon Nanotube/Aluminum Functionally Graded Materials Fabricated by Centrifugal Slurry Methods
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Fabrication
2.2. Materials Characterization
3. Experimental Results
3.1. Microstructures
3.2. Mechanical Properties
4. Calculation of Sedimentation Velocity
5. Discussion
6. Conclusions
- Centrifugal slurry methods were effectively applied to obtain a gradient of content of CNT in CNT/Al matrix FGMs.
- CNT was highly apart each other in the solvent of dimethylacetamide (DMAs) with the dispersant of potassium carbonate (K2CO3) under ultrasonic sonication conditions.
- Owing to the centrifugal force, the content of CNT gradually varies in each Al matrix, which was verified by SEM EDX element analysis and Vickers hardness.
- CNT-rich surface indicated higher frictional force as well as wear resistance (lower mass reduction) than CNT-poor surface in FGMs.
- In order to understand formation of a gradient of CNT content by Stokes’ law, it may be necessary to consider the effect of states of aggregation of CNT or CNT surrounded by dispersant of K2CO3.
Funding
Conflicts of Interest
References
- Hanizam, H.; Sallehc, M.S.; Omar, M.Z.; Sulong, A.B. Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes-aluminium alloy composite through Taguchi method. J. Mater. Res.Technol. 2019, 8, 2223–2231. [Google Scholar] [CrossRef]
- Yi, C.; Chen, X.; Gou, F.; Dmuchowski, C.M.; Sharma, A.; Park, C.; Ke, C. Direct Measurements of the Mechanical Strength of Carbon Nanotube-Aluminum Interfaces. Carbon 2017, 125, 93–102. [Google Scholar] [CrossRef]
- Sridhar, I.; Narayanan, K.R. Processing and characterization of MWCNT reinforced aluminum matrix composites. J. Mater. Sci. 2009, 44, 1750–1756. [Google Scholar] [CrossRef]
- Cavaliere, P.; Sadeghi, B.; Shabani, A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J. Mater. Sci. 2017, 52, 8618–8629. [Google Scholar] [CrossRef]
- Matsumoto, K.; Takahashi, T.; Ishii, S.; Jikei, M. Investigation of Dispersibility of Multi-Walled Carbon Nanotubes Using Polysulfones with Various Structures. Int. J. Soc. Mater. Eng. Resour. 2014, 20, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Khanna, V.; Kumar, V.; Bansal, S.A. Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective. Mater. Res. Bull. 2021, 138, 111224. [Google Scholar] [CrossRef]
- Velmurugan, V.; Reddy, L.V.K.; Thanikaikarasan, S. A study on mechanical characterization of carbon nanotube reinforced metal matrix composites. Mater. Today Proc. 2020, 33, 3520–3524. [Google Scholar] [CrossRef]
- Tsukamoto, H. Enhanced Mechanical Properties of Carbon Nanotube-Reinforced Magnesium Composites with Zirconia Fabricated by Spark Plasma Sintering. J. Comp. Mater. 2021, 55, 2503–2512. [Google Scholar] [CrossRef]
- Merino, C.A.I.; Sillas, J.E.L.; Meza, J.M.; Ramirez, J.M.H. Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J. Alloys Compd. 2017, 707, 257–263. [Google Scholar] [CrossRef]
- Aristizabal, K.; Katzensteiner, A.; Bachmaier, A.; Mücklich, F.; Suarez, S. Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation. Carbon 2017, 125, 156–161. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, X.; Kikuchi, K.; Nomura, N.; Yoshimi, K.; Kawasaki, A. Carbon nanotubes as a unique agent to fabricate nanoceramic/metal composite powders for additive manufacturing. Mater. Des. 2018, 137, 276–285. [Google Scholar] [CrossRef]
- Sathish, T.; Mohanavel, V.; Ansari, K.; Saravanan, R.; Karthick, A.; Afzal, A.; Alamri, S.; Saleel, C.A. Synthesis and characterization of mechanical properties and wire cut EDM process parameters pnalysis in AZ61 magnesium alloy+ B4C+ SiC. Materials 2021, 14, 3689. [Google Scholar] [CrossRef]
- Alekseev, A.V.; Yesikov, M.A.; Strekalov, V.V.; Mali, V.I.; Khasin, A.A.; Predtechensky, M.R. Effect of single wall carbon nanotubes on strength properties of aluminum composite produced by spark plasma sintering and extrusion. Mater. Sci. Eng. A 2020, 793, 139746. [Google Scholar] [CrossRef]
- Thirugnanasambantham, K.G.; Sankaramoorthy, T.; Karthikeyan, R.; Kumar, K.S. A comprehensive review: Influence of the concentration of carbon nanotubes (CNT) on mechanical characteristics of aluminium metal matrix composites: Part 1. Mater. Today Proc. 2021, 45, 2561–2566. [Google Scholar] [CrossRef]
- Thirugnanasambantham, K.G.; Sankaramoorthy, T.; Vaysakh, M.; Nadish, S.Y.; Madhavan, S. A critical review: Effect of the concentration of carbon nanotubes (CNT) on mechanical characteristics of aluminium metal matrix composites: Part 2. Mater. Today Proc. 2021, 45, 2890–2896. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, X.Y.; Zhang, B.; Kondoh, K.; Li, J.S.; Qian, M. Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater. Sci. Eng. A 2020, 795, 139930. [Google Scholar] [CrossRef]
- Aranke, O.; Gandhi, C.; Dixit, N.; Kuppan, P. Influence of Multiwall Carbon Nanotubes (MWCNT) on Wear and Coefficient of Friction of Aluminium (Al 7075) Metal Matrix Composite. Mater. Today Proc. 2018, 5, 7748–7757. [Google Scholar] [CrossRef]
- Tsukamoto, H. Enhanced Mechanical Properties of Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgical and Repeated Hot-Rolling Techniques. J. Compos. Sci. 2020, 4, 169–178. [Google Scholar] [CrossRef]
- Tsukamoto, H. Design against fracture of functionally graded thermal barrier coatings using transformation toughening. Mater. Sci. Eng. A 2010, 527, 3217–3226. [Google Scholar] [CrossRef]
- Tsukamoto, H. Analytical method of inelastic thermal stresses in a functionally graded material plate by a combination of micro- and macro mechanical approaches. Compos. B Eng. 2003, 34, 561–568. [Google Scholar] [CrossRef]
- Tsukamoto, H. Microstructure and indentation properties of ZrO2/ Ti functionally graded materials fabricated by spark plasma sintering. Mater. Sci. Eng. A 2015, 640, 338–349. [Google Scholar] [CrossRef]
- Luo, Y.W.; Ma, T.; Shao, W.W.; Zhang, G.P.; Zhang, B. Effects of heat treatment on microstructures and mechanical properties of GH4169/K418 functionally graded material fabricated by laser melting deposition. Mater. Sci. Eng. A 2021, 821, 141601. [Google Scholar] [CrossRef]
- Sam, M.; Jojith, R.; Radhika, N. Progression in manufacturing of functionally graded materials and impact of thermal treatment—A critical review. J. Manuf. Processes 2021, 68, 1339–1377. [Google Scholar] [CrossRef]
- Saleh, B.; Jiang, J.; Fathi, R.; Al-hababi, T.; Xu, Q.; Wang, L.; Song, D.; Ma, A. 30 Years of functionally graded materials: An overview of manufacturing methods, Applications and Future Challenges. Compos. B Eng. 2020, 201, 108376. [Google Scholar] [CrossRef]
- El-Galy, I.M.; Ahmed, M.H.; Bassiouny, B.I. Characterization of functionally graded Al-SiCp metal matrix composites manufactured by centrifugal casting. Alex. Eng. J. 2017, 56, 371–381. [Google Scholar] [CrossRef]
- Ogawa, T.; Watanabe, Y.; Sato, H.; Kim, I.-S.; Fukui, Y. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method. Compos. Part A 2006, 37, 2194–2200. [Google Scholar] [CrossRef]
- Chumanov, I.V.; Anikeev, A.N.; Chumanov, V.I. Fabrication of functionally graded materials by introducing wolframium carbide dispersed particles during centrifugal casting and examination of FGM’s structure. Procedia Eng. 2015, 129, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Rajan, T.P.D.; Pillai, R.M.; Pai, B.C. Characterization of centrifugal cast functionally graded aluminum-silicon carbide metal matrix composites. Mater. Charact. 2010, 61, 923–928. [Google Scholar] [CrossRef]
Line Speed | Rotation Radius | Rotation Time | Direction of Rotation |
---|---|---|---|
10 mm/s | 2 mm | 1200 s | Clockwise |
CNT-Poor Side→CNT-Rich Side (Cetrifugal Force Direction) | |||||
---|---|---|---|---|---|
Rotation Speed (rpm) | Spectrum ① | Spectrum ② | Spectrum ③ | Spectrum ④ | |
150 | Al (mass (%)) | 76.43 | 74.92 | 74.17 | 75.11 |
CNT (mass (%)) | 23.57 | 25.08 | 25.83 | 24.89 | |
200 | Al (mass (%)) | 86.01 | 82.03 | 86.60 | 84.41 |
CNT (mass (%)) | 13.99 | 17.97 | 13.40 | 15.59 | |
250 | Al (mass (%)) | 88.13 | 86.96 | 87.49 | 86.75 |
CNT (mass (%)) | 11.87 | 13.04 | 12.51 | 13.25 | |
300 | Al (mass (%)) | 85.81 | 86.12 | 86.53 | 83.51 |
CNT (mass (%)) | 14.19 | 13.88 | 13.47 | 16.49 | |
350 | Al (mass (%)) | 86.25 | 88.04 | 82.94 | 84.47 |
CNT (mass (%)) | 13.75 | 11.96 | 17.08 | 15.53 | |
400 | Al (mass (%)) | 84.20 | 84,55 | 84.79 | 81.97 |
CNT (mass (%)) | 15.89 | 15.45 | 15.21 | 18.03 | |
450 | Al (mass (%)) | 85.81 | 86.61 | 85.93 | 85.25 |
CNT (mass (%)) | 14.19 | 13.39 | 14.07 | 14.75 |
Density (kg/m3) | Particle Size (µm) | |
---|---|---|
Al | 2750 | 30 |
CNT | 1000 | 0.008 (d), 6 (l), 30 (agg.), 50 (surrounded by K2CO3) |
Density (kg/m3) | Viscosity (mPa s) | |
---|---|---|
DMAs | 937 | 0.92 |
K2CO3 | 2300 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukamoto, H. Tribological Characterization of Carbon Nanotube/Aluminum Functionally Graded Materials Fabricated by Centrifugal Slurry Methods. J. Compos. Sci. 2021, 5, 254. https://doi.org/10.3390/jcs5100254
Tsukamoto H. Tribological Characterization of Carbon Nanotube/Aluminum Functionally Graded Materials Fabricated by Centrifugal Slurry Methods. Journal of Composites Science. 2021; 5(10):254. https://doi.org/10.3390/jcs5100254
Chicago/Turabian StyleTsukamoto, Hideaki. 2021. "Tribological Characterization of Carbon Nanotube/Aluminum Functionally Graded Materials Fabricated by Centrifugal Slurry Methods" Journal of Composites Science 5, no. 10: 254. https://doi.org/10.3390/jcs5100254
APA StyleTsukamoto, H. (2021). Tribological Characterization of Carbon Nanotube/Aluminum Functionally Graded Materials Fabricated by Centrifugal Slurry Methods. Journal of Composites Science, 5(10), 254. https://doi.org/10.3390/jcs5100254