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Abstract: Although carbon nanotube (CNT) is a promising material due to its excellent mechanical
and functional properties, CNT has not been effectively used for high performance composites due
to the degradation of its mechanical properties as a result of insufficient dispersibility of CNT in
its matrix. In this study, CNT/aluminum (Al) matrix functionally graded materials (FGMs) were
fabricated by centrifugal slurry methods. The dispersion of CNT was carried out with the solvent of
dimethylacetamide (DMAs), and the dispersant of potassium carbonate (K2CO3) under ultrasonic
sonication conditions. Tribological characteristics on the FGMs were investigated using a ball-on-disk
tribometer. It was demonstrated that the presence of CNT contributed to an increase of the coefficients
of friction and an enhancement of wear resistances.

Keywords: carbon nanotube; aluminum; functionally graded materials (FGMs); centrifugal slurry
method; frictional characteristics

1. Introduction

Much attention has been paid to application of carbon nanotube (CNT) in both sci-
entific and industrial fields in the past decades due to its excellent physical and chemical
properties such as its high strength, high elastic modulus, high thermal conductivity, and
low density. CNT is a tube-like shape of carbon with a diameter on the nanometer scale.
From the number of carbon layers, CNT can be classified into two types of CNT, that is
single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT).
Due to its excellent properties, CNT can play a significant role in the fields of nanotechnol-
ogy, electronics, optics and others. CNT can be expected as an irreplaceable reinforcement of
metal matrix composites (MMCs) [1–12].

Attempts to develop CNT/aluminum (Al) matrix composites with enhanced strength
have been highly attractive, and can produce suitable structural materials in the aerospace
and automobile industries. However, at present, there are very few practical examples due
to the difficulty in obtaining uniform dispersion and wetting of CNT with the matrix. Most
bulk CNT/Al composites exhibit poorer mechanical properties than expected. Great efforts
have been made to prepare such CNT/metal composites with homogeneous distribution as
well as high volume fraction of CNT simultaneously. It can be accompanied with difficulty
to represent uniform dispersion of the reinforcements into the matrix without damaging
the nanotubes [13–17]. It was proposed that in order to tackle such problems, that is, take
advantage of high performance of CNT in the composites, CNT was dispersed in a solvent
of dimethylacetamide (DMAc) with a dispersing agent of potassium carbonate (K2CO3),
which is an inorganic salt, under ultrasonic conditions [18].

Functionally graded materials (FGMs) are practically innovative concepts to protect
the materials and structures working under super high temperatures and temperature
gradients. FGMs are multi-phase composites which can be engineered with gradual spatial
variations of constituents, resulting in smooth variation of thermal, mechanical and electri-
cal properties. Strong points of FGMs to two dissimilar materials joined directly include
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smoothing of thermal stress distributions across the layers, minimization or elimination of
stress concentrations and singularities at the interface corners and an increase in bonding
strength [19–23]. These advantages are achieved by making the FGMs with a predeter-
mined gradual spatial variation of the volume fractions and microstructure of the material
constituents according to functional performance requirements.

There have been many fabrication techniques for FGMs such as chemical and physical
vapor depositions, plasma spray methods, centrifugal casting or centrifugal slurry, and
a variety of powder metallurgical techniques. FGMs can have two manners of gradual
transition of properties from one side to the other. One is a continuous gradient manner
and another is a stepwise manner [24]. Centrifugal techniques lead to formation of a
continuous gradient manner in FGMs. Centrifugal casting can be performed by addition
of hard particles to a molten metal, which are mixed and poured into a rotating mold.
The materials are solidified in the mold under centrifugal force producing a gradient of
the hard particles in the metals, which depends on the size of particles, mold rotational
speed, density and viscosity of the molten metal as well as the rate of solidification [25–28].
Centrifugal techniques were also applied with slurry consisting of mixture of ingredient
powders and some liquids [26]. However, it has been mostly reported that centrifugal
techniques for fabrication of FGMs are employed for only particle type of reinforcements,
not fibers or fillers like CNT.

In this study, CNT/Al matrix FGMs were fabricated using centrifugal slurry methods.
Some chemical treatments were applied to processes of making CNT apart each other
in solvent of DMAc with dispersant of K2CO3 under ultrasonic sonication conditions.
Tribological characteristics such as frictional force and wear resistance for CNT/Al matrix
FGMs were investigated using a ball-on-disk tribometer.

2. Experimental Procedure
2.1. Fabrication

MWCNT with a diameter of 6~10 nm and with a length of 2~10 µm was used (supplied
by CNano Technology Co., Ltd., Jiangsu, China through Marubeni Information Systems
(MSYS) Co., Ltd., Tokyo, Japan). Al powders with a diameter of less than 30 µm (supplied
by Kojundo Chemical Laboratory Co., Ltd., Saitama, Japan) were also used. CNT is
cohesive and cannot exhibit inherit excellent properties unless dispersing CNT to the
level of each one in the matrix. CNT was dispersed with the solvent of DMAc, and the
dispersing agent of K2CO3. The concentration of CNT to organic solvent was 1.0 mg/mL,
and the concentration of dispersant to organic solvent was 0.2 mg/mL. Figure 1 shows the
schematic illustration of CNT dispersing processes. Ultrasonic treatment was employed
for dispersing CNT. The treatment was conducted for 2 h. The slurry of CNT was filtered
using filter paper, and the CNT was taken out. A mixed powder was prepared from CNT
and Al powders. The mixing ratios (volume fractions) of CNT and Al powders were 0.3%
and 99.7%, respectively.
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Centrifugal slurry methods were carried out. The mixed powder slurry was set in the
mold in the centrifugal slurry equipment, as shown in Figure 2. Centrifugal operation was
conducted with the rotation speeds of 150~450 rpm in steps of 50 rpm for 120 s. After the
operation, the mixtures of Al powders and CNT were dried at 150 ◦C for 2 h in a constant-
temperature bath. The dried samples were pressed at 150 kN using a cold pressing machine
(Masada Seisakusho Co.,Ltd., Tokyo, Japan), which was followed by sintering at 500 ◦C
for 2 h in a sintering furnace in air. The fabricated samples of the FGMs are illustrated in
Figure 3.
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Figure 3. Schematic illustration of samples of FGMs.

2.2. Materials Characterization

Microstructure observation was conducted using a scanning electron microscope
(SEM, SU8020, Hitachi High-Tech Co. Ltd., Tokyo, Japan) and energy dispersive X-ray
spectrometry (EDX). Micro Vickers hardness test was conducted on the surfaces and cross
sections of the test pieces of the FGMs with several points as shown in Figure 4. The load
was set at 500 gW (4903 mN) and loading time was 10 s. The hardness test was conducted
at 5 points in each sample. Ball-on-disk tests were conducted. Figure 5 shows an apparatus
photo and schematic illustration of ball-on-disk equipment set-ups. The test conditions are
tabulated in Table 1.
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Table 1. Conditions for the ball-on-disk test.

Line Speed Rotation Radius Rotation Time Direction of Rotation

10 mm/s 2 mm 1200 s Clockwise

3. Experimental Results
3.1. Microstructures

Figure 6 shows the SEM image and EDX results for FGMs with the rotating speed
of 150 rpm. Table 2 indicates the mass fraction (%) of Al and CNT in samples of FGMs
fabricated with different rotation speeds. Higher rotation speeds correspond to higher
centrifugal force, for which normally centrifugal force is proportional to the square of the
rotation speed [11]. It is seen that, along the centrifugal force directions, segregation occurs,
in which CNT moves from one side to another (from the right side to the left in Figure 6).
This segregation degree depends on viscosity and density of slurry, size and density of Al
powders and CNT, aspect ratio of CNT as well as rotating speeds as given by Equations (1)
and (2). It is considered that centrifugal slurry methods can be effective to make a gradient
of content of CNT in Al matrix, even though CNT has a cylindrical shape.
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Table 2. Mass fraction (%) of Al and CNT in samples of FGMs with different rotation speeds.

CNT-Poor Side→CNT-Rich Side (Cetrifugal Force Direction)

Rotation Speed
(rpm)

Spectrum
1©

Spectrum
2©

Spectrum
3©

Spectrum
4©

150
Al (mass (%)) 76.43 74.92 74.17 75.11

CNT (mass (%)) 23.57 25.08 25.83 24.89

200
Al (mass (%)) 86.01 82.03 86.60 84.41

CNT (mass (%)) 13.99 17.97 13.40 15.59

250
Al (mass (%)) 88.13 86.96 87.49 86.75

CNT (mass (%)) 11.87 13.04 12.51 13.25

300
Al (mass (%)) 85.81 86.12 86.53 83.51

CNT (mass (%)) 14.19 13.88 13.47 16.49

350
Al (mass (%)) 86.25 88.04 82.94 84.47

CNT (mass (%)) 13.75 11.96 17.08 15.53

400
Al (mass (%)) 84.20 84,55 84.79 81.97

CNT (mass (%)) 15.89 15.45 15.21 18.03

450
Al (mass (%)) 85.81 86.61 85.93 85.25

CNT (mass (%)) 14.19 13.39 14.07 14.75
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3.2. Mechanical Properties

Figure 7 shows Vickers hardness in the cross sections of the samples. The tendency
can be seen that, for samples with any rotation speeds, as closer to the CNT-rich surface in
the centrifugal force direction, hardness increases. It was confirmed that in addition to the
SEM EDX data, hardness results also demonstrated the effectiveness of centrifugal slurry
methods to fabricate CNT/Al matrix FGMs. Namely, in centrifugal force directions, the
transfer of CNT in Al matrix can be seen from one side to another. Figure 8 shows average
values of Vickers hardness of CNT-rich and CNT-poor surfaces. It is seen that except for
the sample with 450 rpm, the CNT-rich surface shows higher hardness than CNT-poor one.
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Next, we look at tribological characteristics of the CNT/Al FGMs. Figure 9 indicates
ball-on-disk test results for surfaces of pure Al, and CNT-rich surfaces of FGMs with the
rotation speed of 150 rpm. It is seen that the friction force for surfaces of pure Al is almost
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constant with time, while that for CNT-rich surfaces of the FGMs are waved in relatively
large periods. It is considered that CNT can show high resistance to a ball movement
corresponding to increase of friction force, that is, having the high coefficient of friction.
Figure 10 shows probability density of friction force, including the results of samples of
pure Al and FGMs with the rotation speeds from 150 to 450 rpm. This is derived from
average values and standard deviations of the frictional forces. It is seen that higher friction
force can be detected on CNT-rich surfaces than CNT-poor surfaces. Wider spreading in
probability density of frictions, that corresponds to higher standard deviations, can be seen
on the CNT-poor surfaces than CNT-rich surfaces. It is concluded that presence of CNT
can lead to increase of the coefficient of friction.
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Figure 11 shows mass reduction of samples of the FGMs with the rotation speeds
from 150 to 450 rpm. It is seen that, in FGMs with the rotation speeds of 150, 250, 300
and 400 rpm, CNT-rich sides show lower mass reduction than CNT-poor sides, which
may come from the idea that in CNT-rich sides, CNT was scraped off the surface before
scraping of Al, leading to low mass reduction of the samples. It can be confirmed that the
CNT gradient in CNT/Al matrix FGMs contributes to the enhanced wear resistance of the
materials, even though the coefficient of friction increases with increasing CNT content.
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4. Calculation of Sedimentation Velocity

It has been reported by some researchers that FGMs with particles can be fabricated
by centrifugal techniques [25–28]. For such FGMs with particles, theoretical work was
also reported [26]. It was demonstrated in the work [26] that the motion of particles
in viscous liquid under a centrifugal force obeys the Stokes’ law. The sedimentation
velocity of particles in viscous liquid under a centrifugal force can be expressed by the
Stokes’ sedimentation velocity equation shown in Equation (1). The relative centrifugal
acceleration G in Equation (1) can be expressed by Equation (2) [26].

V =
Gg(ρs − ρ)d2

18µ
(1)

G =
2π2DN2

g
(2)

Here, ρs is the density of the particles, ρ is the density of the fluid, d is the particle
diameter, and µ is the viscosity of the fluid, D/2 is the radius of rotation, and N is the
number of rotations. From Equations (1) and (2), the velocity of particles is proportional to
the difference in density between slurry and particles, the square of the diameter of the
particles, and the square of the number of revolutions, and is inversely proportional to the
viscosity of the fluid.

Table 3 shows densities and particle sizes of Al and CNT, and Table 4 shows densities
and viscosities of solvent (DMAs) and dispersant (K2CO3). Using these, sedimentation
velocities of CNT and Al powders were calculated based on Stokes’ sedimentation velocity
equation shown in Equation (1) dealing with the particles (shape of sphere) in the fluid,
even though CNT has a cylidrical shape (tube), and CNT agglomerates in a state where
tubes are entangled with each other due to strong π-π interaction and van der Waals force.
In the current calculations, CNT is assumed to have a shape of sphere with diameters
of the same values as the diameter (8 nm) or the length (6 µm) of the CNT. The state of
aggregation of CNT was also considered, which has the shape of sphere with a diameter of
30 µm. In addition, it can be considered that dispersant of K2CO3 may surround the CNT
to form sphere particles with a diameter of 50 µm. Figure 12 shows the calculation results
based on Equations (1) and (2) considering such sates of CNT.
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Table 3. Density and particle size of Al and CNT.

Density (kg/m3) Particle Size (µm)

Al 2750 30

CNT 1000 0.008 (d), 6 (l), 30 (agg.), 50 (surrounded by K2CO3)

Table 4. Density and viscosity of solvent (DMAs) and dispersant (K2CO3).

Density (kg/m3) Viscosity (mPa s)

DMAs 937 0.92

K2CO3 2300 -
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It is seen in Figure 12 that sedimentation velocities of CNT of spherical shape with
a diameter of 8 nm, 6 µm and 30 µm (aggregation) are lower than that of Al powders.
Only CNT surrounded by K2CO3 (50 µm) shows higher velocity than Al powders. It is
considered that there may be other factors, which cannot be expressed by Stokes’ law, to
understand the motion of CNT to centrifugal directions is quicker than that of Al powders.
Even so this result can provide some way to design such kinds of FGMs using centrifugal
slurry methods.

5. Discussion

In the current study, CNT/Al matrix FGMs were fabricated using centrifugal slurry
methods. As chemical treatments, the processes of dispersion of CNT were carried out
with the solvent of DMAs, and the dispersing agent of K2CO3 under ultrasonic sonication
conditions. As seen in Figure 6, CNT moves to the centrifugal force directions. According
to the simulation results of sedimentation velocities of particles derived from Stokes’ law
expressed by Equations (1) and (2), sedimentation velocity of CNT may be lower than
that of Al powders as shown in Figure 12 if the shape of CNT is assumed to be spherical.
However, considering the effect of dispersant of K2CO3 surrounding the CNT or the fibre
shape of CNT not being spherical, it may be possible for CNT to move more quickly than
Al powders into the centrifugal direction.
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The samples of CNT/Al matrix FGMs fabricated by centrifugal slurry methods were
investigated on their tribological characteristics. Such CNT/Al matrix FGMs are expected
to be applied to pistons of engines in automobiles and others. Therefore, it is important to
know fiction force (coefficient) and the amount of reduction of the surface materials during
the friction processes. It was found that the presence of CNT can contribute to high friction
force, that is, high coefficient of friction. CNT-rich surfaces show higher friction force than
CNT-poor surfaces. CNT-rich sides show lower mass reduction than CNT-poor sides as
shown in Figure 11. It is considered that in CNT-rich sides, CNT was scraped off the surface
before scraping of Al, leading to low mass reduction of the samples. It can be confirmed
that the CNT gradient in CNT/Al matrix FGMs contributes to enhance wear resistance of
the materials, even though the coefficient of friction increases with increasing CNT content.
If the CNT orientation can be controlled, ex. by post-sintering rolling processing, etc., there
is a possibility that the coefficient of friction may decrease on CNT-rich surfaces.

6. Conclusions

In this study, CNT/aluminum (Al) matrix functionally graded materials (FGMs) were
fabricated using centrifugal slurry methods. Tribological characteristics on CNT/Al matrix
FGMs were investigated using a ball-on-disk tribometer. The summary is described below.

1. Centrifugal slurry methods were effectively applied to obtain a gradient of content of
CNT in CNT/Al matrix FGMs.

2. CNT was highly apart each other in the solvent of dimethylacetamide (DMAs) with
the dispersant of potassium carbonate (K2CO3) under ultrasonic sonication conditions.

3. Owing to the centrifugal force, the content of CNT gradually varies in each Al matrix,
which was verified by SEM EDX element analysis and Vickers hardness.

4. CNT-rich surface indicated higher frictional force as well as wear resistance (lower
mass reduction) than CNT-poor surface in FGMs.

5. In order to understand formation of a gradient of CNT content by Stokes’ law, it may
be necessary to consider the effect of states of aggregation of CNT or CNT surrounded
by dispersant of K2CO3.

In future work, the orientation of CNT in the FGMs will be controlled by post-sintering
mechanical treatments.
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