# The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental

## 3. Results

#### 3.1. Simulation Behavior of the Magnet and MRE Samples

#### 3.2. Microstructural Observation of MRE Composite

#### 3.3. Micro Computed Tomography of MRE

## 4. Discussions

^{3}and surface area of 1166.2 mm

^{2}. Both the lower and upper vertical positions of the sample with centroid position are explained.

_{0}[18] is

_{a}= 4πμ

_{m}μ

_{0}R

^{3}βH

_{0}

_{0}is the vacuum permeability, β = (μ

_{p}− μ

_{m})/μ

_{p}+ 2μ

_{m}), μ

_{p}and μ

_{m}are the relative permeability of the particles and the matrix respectively. For an iron particle and silicone rubber, μ

_{p}≈ 1000, μ

_{m}≈ 1 and β ≈ 1. The self-assembled microstructure can also decrease the initial shear modulus. The initial modulus of the MRE without magnetic field [19] can be written as

_{0}is the modulus of the matrix and Φ is the volume percentage of the particles. The particle volume percentage in the MRE was assumed to be 30%. On this basis, the probability of formation of SC or HCP microstructures is effective in the composite. However, some exceptions were observed in the MRE composites during the fabrication process. Due to the higher density of iron particles, during the curing process at room temperature, their settlement was observed more towards the bottom with respect to the top layer (Figure 15).

## 5. Conclusions

## Supplementary Materials

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Samal, S.; Vlacha, J.; Kavana, P. Improved mechanical properties of magneto rheological elastomeric composite with isotropic iron filler distribution. Ciênc. Tecnol. Mater.
**2016**, 28, 155–161. [Google Scholar] [CrossRef] - Carlson, J.D.; Jolly, M.R. MR fluid, foam and elastomer devices. Mechatronics
**2000**, 10, 555–569. [Google Scholar] [CrossRef] - Ginder, J.M.; Nichols, M.E.; Elie, L.D.; Tardiff, J.L. Magnetorheological elastomers: Properties and applications. In Proceedings of the 1999 Symposium on Smart Structures and Materials, Newport Beach, CA, USA, 1 March 1999; pp. 131–138. [Google Scholar]
- Hu, Y.; Wang, Y.L.; Gong, X.L.; Gong, X.Q.; Zhang, X.Z.; Jiang, W.Q.; Zhang, P.Q.; Chen, Z.Y. New magnetorheological elastomers based on polyurethane/Si-rubber hybrid. Polym. Test.
**2005**, 24, 324–329. [Google Scholar] [CrossRef] - Jolly, M.R.; Carlson, J.D.; Munoz, B.C.; Bullions, T.A. The magnetoviscoelastic effect of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct.
**1996**, 7, 613–622. [Google Scholar] [CrossRef] - Balasoiu, M.; Bica, I. Composite magnetorheological elastomers as dielectrics for plane capacitors: Effects of magnetic field intensity. Results Phys.
**2016**, 6, 199–202. [Google Scholar] [CrossRef] - Bica, I.; Anitas, E.M.; Averis, L.M.E. Tensions and deformations in composites based on polyurethane elastomer and magnetorheological suspension: Effects of the magnetic field. J. Ind. Eng. Chem.
**2015**, 28, 86–90. [Google Scholar] [CrossRef] - Bunoiu, M.; Bica, I. Magnetorheological elastomer based on silicone rubber, carbonyl iron and Rochelle salt: Effects of alternating electric and static magnetic fields intensities. J. Ind. Eng. Chem.
**2016**, 37, 312–318. [Google Scholar] [CrossRef] - Shiga, T.; Okada, A.; Kurauchi, T. Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci.
**1995**, 58, 787–792. [Google Scholar] [CrossRef] - Stepanov, G.V.; Borin, D.Y.; Raikher, L.Y.; Melenev, P.V.; Perov, N.S. Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter
**2008**, 20, 204121. [Google Scholar] [CrossRef] [PubMed] - Petríková, I.; Marvalová, B. Experimental research and numerical simulation of the damping properties of Magnetorheological Elastomers. In Constitutive Models for Rubber X; Lion, A., Johlitz, M., Eds.; CRC Press: London, UK, 2017; pp. 1–8. [Google Scholar]
- Samal, S.; Vlach, J.; Kolinova, M.; Kavan, P. Micro-computed tomography characterization of isotropic filler distribution in magnetorheological elastomeric composites. In Advanced Processing and Manufacturing Technologies for Nanostructured and Multifunctional Materials; Ohji, T., Singh, M., Halbig, M., Moon, K., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 57–69. [Google Scholar]
- Yu, M.; Ju, B.; Fu, J.; Liu, X.; Yang, Q. Influence of composition of carbonyl iron particles on dynamic mechanical properties of magnetorheological elastomers. J. Magn. Magn. Mater.
**2012**, 324, 2147–2152. [Google Scholar] [CrossRef] - Lokander, M.; Stenberg, B. Improving the magnetorheological effect in isotropic magnetorheological rubber materials. Polym. Test.
**2003**, 22, 677–680. [Google Scholar] [CrossRef] - Sorokin, V.V.; Ecker, E.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, E.Y.; Khokhlovad, E.A.R. Experimental study of the magnetic field enhanced Payne effect in magnetorheological elastomers. Soft Matter
**2014**, 10, 8765–8776. [Google Scholar] [CrossRef] [PubMed] - Molchanov, V.; Stepanov, G.; Vasiliev, V.; Kramarenko, E.; Khokhlov, A.; Xu, Z.-D.; Guo, Y.-Q. Viscoelastic properties of magnetorheological elastomers for damping applications. Macromol. Mater. Eng.
**2014**, 299, 1116–1125. [Google Scholar] [CrossRef] - Ivaneyko, D.; Toshchevikov, V.; Saphiannikova, M.; Heinrich, G. Mechanical properties of magneto-sensitive elastomers: Unification of the continuum-mechanics and microscopic theoretical approaches. Soft Matter
**2014**, 10, 2213–2225. [Google Scholar] [CrossRef] [PubMed] - Rey, T.; Chagnon, G.; Le Cam, J.-B.; Favier, D. Effects of Temperature on the Mechanical Behavior of Filled and Unfilled Silicone Rubbers. Available online: https://hal.archives-ouvertes.fr/hal-00936536 (accessed on 11 January 2014).
- Taniguchi, T.; Mitsumata, T.; Sugimoto, M.; Koyama, K. Anisotropy in elastic modulus of hydrogel containing magnetic particles. Physica A
**2006**, 370, 240–244. [Google Scholar] [CrossRef] - Qiao, X.; Lu, X.; Gong, X.; Yang, T.; Sun, K.; Chen, X. Effect of carbonyl iron concentration and processing conditions on the structure and properties of the thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Polym. Test.
**2015**, 47, 51–58. [Google Scholar] [CrossRef] - Sorokin, V.V.; Stepanov, G.V.; Shamonin, M.; Monkman, G.J.; Kramarenko, E.Y. Hysteresis of the viscoelastic properties and the normal force in magnetically and mechanically soft magnetoactive elastomers: Effects of filler composition, strain amplitude and magnetic field. Polymer
**2015**, 76, 191–202. [Google Scholar] [CrossRef] - Wang, Y.; Hu, Y.; Chen, L.; Gong, X.; Jiang, W.; Zhang, P.; Chen, Z. Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers. Polym. Test.
**2006**, 25, 262–267. [Google Scholar] [CrossRef] - Lu, X.; Qiao, X.; Watanabe, H.; Gong, X.; Yang, T.; Li, W.; Sun, K.; Li, M.; Yang, K.; Xie, H.; et al. Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Rheol. Acta
**2012**, 51, 37–50. [Google Scholar] [CrossRef] - Saxena, P.; Hossain, M.; Steinmann, P. A theory of finite deformation magneto-viscoelasticity. Int. J. Solids Struct.
**2013**, 50, 3886–3897. [Google Scholar] [CrossRef] - Saxena, P.; Hossain, M.; Steinmann, P. Non-linear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc. R. Soc. Lond. Ser. A
**2014**, 470, 2166. [Google Scholar] [CrossRef] [PubMed] - Saxena, P.; Pelteret, J.P.; Steinmann, P. Modelling of iron-filled magneto-active polymers with a dispersed chain-like microstructure. Eur. J. Mech. A Solids
**2015**, 50, 132–151. [Google Scholar] [CrossRef] - Mehnert, M.; Hossain, M.; Steinmann, P. Towards a thermo-magneto-mechanical framework for magneto-rheological elastomers. Int. J. Solids Struct.
**2017**, 128, 117–132. [Google Scholar] [CrossRef]

**Figure 1.**Optical images (

**a**,

**b**) of the linear arrangement of filler particles within the magneto-rheological elastomers (MREs) composite (N 1522 as matrix) in the presence of magnetic field during fabrication. (

**c**) The linear chain and branches of filler particles.

**Figure 3.**(

**a**) Magnet with MRE sample and (

**b**) cross section view of magnet with core, skeleton, coil winding, and MRE sample position.

**Figure 4.**Schematic presentation of the magnet with the MRE sample position on the top of the magnetic and respective atmosphere, (

**a**) without mesh, (

**b**) with mesh.

**Figure 5.**Distribution of magnetic induction on the above configuration of MRE in presence of magnetic field (

**a**) with mesh and considering surrounding atmosphere (

**b**) without mesh and using lines of force as external parameter.

**Figure 6.**(

**a**) Magnetic induction distribution on the top portion of the configuration exposing the magnet and MRE sample (

**b**) closure view.

**Figure 7.**Magnetic induction of the MRE sample in the presence of a magnetic field showing the distribution of magnetic lines force from the bottom to top layer considering the mesh size as boundary layer.

**Figure 8.**Magnetic induction as a function of arc length from bottom, middle, and top positions in the MRE sample.

**Figure 9.**Magnetic induction in the middle of the coil of the MRE sample from the coil position towards the sample.

**Figure 10.**(

**a**,

**b**) Microstructural image of elastomer matrix and (

**c**,

**d**) scanning electron microscopic image of isotropic distribution of filler particles within the matrix of the composite.

**Figure 11.**(

**a**–

**d**) Self-assembled structure of iron particles (affine coupling, microscopic behavior) in MRE composite.

**Figure 13.**Three-dimensional image of the MRE composite (ZA 22 as matrix) using micro-computed tomography (µCT).

**Figure 14.**µCT characterization of iron filler MRE composites at different orientation for MREs with matrices ZA 22 (

**a**,

**b**) and N1522 (

**c**,

**d**).

**Figure 16.**Dipole–dipole interaction of two filler particles on the various angles and position vectors on alignment of the z-axis for the coupling mechanism in the MRE sample.

**Table 1.**Experimental observation of the magneto-rheological elastomer (MRE) sample with micro-computed tomography (µCT).

Number of Layers | 1101 |

Total VOI Volume | 15.7 mm^{3} |

Object Surface Obj.S | 1166.2 mm^{2} |

Surface Convexity Index SCv.I | −314.3 mm^{−1} |

Structure Separation St.Sp | 0.01 mm |

Surface of Closed Pores Po.S(cl) | 57.3 mm^{2} |

Total Volume of Pore Space Po.V(tot) | 2.7 mm^{3} |

Lower Vertical Position | 0.1 mm |

Object Volume | 12.9 mm^{3} |

Intersection Surface i.S | 29.2 mm^{2} |

Centroid (x) Crd.X | −0.3 mm |

Number of Objects Obj.N | 2913 |

Closed Porosity Po(cl) | 0.6% |

Total Porosity Po(tot) | 17.4% |

Upper Vertical Position | 2.3 mm |

Object Volume Obj.V/TV | 82.5% |

Object Surface/Volume Ratio Obj.S/Obj.V | 90.0 mm^{−1} |

Centroid (y) Crd.Y | 0.02963 mm |

Number of Closed Pores Po.N | (cl) 82215 |

Volume of Open Pore Space Po.V (op) | 2.6 mm^{3} |

Pixel Size | 2 µm |

Total VOI Surface (TS) | 38.7 mm^{2} |

Object Surface Density Obj.S/TV | 74.2 mm^{−1} |

Centroid (z) Crd.Z | 1.2 mm |

Volume of Closed Pores Po.V(cl) | 0.1 mm^{3} |

Open Porosity Po(op) | 16.9% |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Samal, S.; Kolinova, M.; Blanco, I.
The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite. *J. Compos. Sci.* **2018**, *2*, 54.
https://doi.org/10.3390/jcs2030054

**AMA Style**

Samal S, Kolinova M, Blanco I.
The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite. *Journal of Composites Science*. 2018; 2(3):54.
https://doi.org/10.3390/jcs2030054

**Chicago/Turabian Style**

Samal, Sneha, Marcela Kolinova, and Ignazio Blanco.
2018. "The Magneto-Mechanical Behavior of Active Components in Iron-Elastomer Composite" *Journal of Composites Science* 2, no. 3: 54.
https://doi.org/10.3390/jcs2030054