High-Temperature Oxidation-Resistant Composite Coatings for Extreme Environments: Material Systems, Design Strategies, Preparation Technologies, Performance Characterizations, and Research Challenges
Abstract
1. Introduction
2. Oxidation-Resistant Composite Coating Systems
2.1. Metal-Based Composite Coatings
2.1.1. Aluminide-Based Composite Coatings
2.1.2. Silicide-Based Composite Coatings
2.1.3. MCrAlY-Based Composite Coatings
2.2. Ceramic-Based Composite Coatings
2.2.1. Boride-Based Composite Coatings
2.2.2. Carbide-Based Composite Coatings
2.2.3. Nitride-Based Composite Coatings
2.2.4. Oxide Ceramic Composite Coatings
2.2.5. MAX Phase Composite Coatings
2.3. Enamel Composite Coatings
2.4. Inorganic Paint Composite Coatings
3. Structural Regulation Design
3.1. Multi-Layer/Gradient Structures
3.2. Diffusion Barriers
3.3. Self-Healing Structure Design
3.4. Other Microstructures
3.5. Coating Preparation Technologies
3.5.1. Atmospheric Plasma Spraying
3.5.2. Cold Spraying
3.5.3. Laser Cladding
3.5.4. Magnetron Sputtering
3.5.5. Plasma-Electrolyte Oxidation
3.5.6. Embedding Method
3.5.7. Slurry Method
4. Coating Performance Evaluation Methods
4.1. Static Environment
4.1.1. Isothermal Oxidation
4.1.2. Water–Oxygen Corrosion
4.1.3. Molten Salt Corrosion
4.1.4. Thermal Radiation Performance
4.2. Dynamic Environment
4.2.1. Cyclic Oxidation and Thermal Shock Resistance
4.2.2. Ablation Resistance
4.2.3. Erosion Resistance
5. Summary and Outlooks
- (1)
- Using first-principles, machine learning, finite element simulation, and other methods to establish the relationship between the physical properties of coating materials and coating structure design, screen and optimize coating systems with high-temperature oxidation resistance. At the same time, from the perspective of coating preparation, the combination of multiple efficient coating preparation technologies, such as embedding method and slurry sintering, chemical vapor deposition, sol–gel combined with air spraying, can be used to optimize the interface between the coating and the substrate, improve the bonding strength and stability of the coating during ultra-high-temperature service.
- (2)
- The actual service environment of coatings is mostly the coupling of multiple complex factors such as high temperature, oxidation, ablation, and thermal shock. Therefore, multiple functional layers can be combined to develop coatings adapted to multi-field coupling environments, such as gradient structure construction of high-emissivity layer–oxidation resistance layer, erosion resistance layer–heat insulation layer–oxidation resistance layer, etc. Meanwhile, by combining atomic-scale and macro-scale and conducting cross-scale regulation, we can guide the development of adaptive coatings that can independently adjust their structure and performance in response to changes in service environment.
- (3)
- Coating performance evaluation should focus on the development of evaluation systems under multi-factor coupling environments. This could be achieved by building a multi-field coupling simulation test platform to simulate the actual service environment of hot-end components, such as water–thermal–oxygen and thermal–force–oxygen coupling environments, and collecting oxidation kinetics, corrosion rates, and instantaneous high-temperature damage of coatings under simulated conditions. In addition, performance testing standards under multi-field coupling environments should be established as soon as possible to promote the transformation of excellent thermal protection coatings from laboratory to engineering applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peters, A.B.; Zhang, D.; Chen, S.; Ott, C.; Oses, C.; Curtarolo, S.; McCue, I.; Pollock, T.M.; Eswarappa Prameela, S. Materials design for hypersonics. Nat. Commun. 2024, 15, 3328. [Google Scholar] [CrossRef]
- Yeranee, K.; Rao, Y. A review of recent studies on rotating internal cooling for gas turbine blades. Chin. J. Aeronaut. 2021, 34, 85–113. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fu, Y.; Chen, R.; Li, T.; Hou, X.; Li, H. Research progress in chemical vapor deposition for high-temperature anti-oxidation/ablation coatings on thermal structural composites. Compos. Part B Eng. 2025, 291, 112015. [Google Scholar] [CrossRef]
- Li, W.; Zhao, X.; Cheng, Y.; Yue, Q.; Xia, W.; Gu, Y.; Zhang, Z. Effect of molybdenum on cyclic oxidation behavior of 4th generation nickel-based single crystal superalloys. Corros. Sci. 2023, 223, 111458. [Google Scholar] [CrossRef]
- Sun, J.; Lu, H.; Wang, Z.; Luo, K.; Lu, J. High-temperature oxidation behaviour of Ti65 titanium alloy fabricated by laser direct energy deposition. Corros. Sci. 2024, 229, 111866. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, X.; Zhang, B.; Xu, J.; Zhong, F.; Zhu, B.; Zhang, Y.; Ou-Yang, J.; Yang, X. Advances in antioxidation coating materials for carbon/carbon composites. J. Alloys Compd. 2021, 886, 161143. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, P.; Zhuang, L.; Zhou, L.; Zhang, J.; Wang, J.; Hou, X.; Riedel, R.; Li, H. Micro/nano multiscale reinforcing strategies toward extreme high-temperature applications: Take carbon/carbon composites and their coatings as the examples. J. Mater. Sci. Technol. 2022, 96, 31–68. [Google Scholar] [CrossRef]
- Zhan, S.; Zhang, Y.; Ji, J.; He, H.; Hu, J.T.; Fu, T. The microstructure, mechanical properties and oxidation protection of niobium alloys for aerospace applications. J. Mater. Sci. 2025, 60, 19455–19483. [Google Scholar] [CrossRef]
- Anne, B.R.; Shaik, S.; Basu, A.; Ramakrishna R, V.S.M. Review on Electrodeposited Ni–W Based Composite Coatings in High-Temperature Applications Concerning Oxidation Behavior. Met. Mater. Int. 2024, 30, 1441–1458. [Google Scholar] [CrossRef]
- Ghadami, F.; Sabour Rouh Aghdam, A.; Ghadami, S. Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: A critical review. Vacuum 2021, 185, 109980. [Google Scholar] [CrossRef]
- Mao, X.; Meng, Q.; Wang, S.; Huang, S.; Yuan, M.; Qiu, Y. Oxidation mechanism and high–temperature strength of Mo-B-C-coated diamonds in the 700 °C–1200 °C temperature range. J. Mater. Res. Technol. 2024, 33, 7829–7841. [Google Scholar] [CrossRef]
- Sun, J.; Fu, Q.-G.; Huo, C.-X.; Li, T. Fracture toughness of thermally sprayed MoSi2 composite with different melting indices. Compos. Part B-Eng. 2018, 150, 242–247. [Google Scholar] [CrossRef]
- Ouyang, J.-H.; Li, Y.-F.; Zhang, Y.-Z.; Wang, Y.-M.; Wang, Y.-J. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants 2022, 10, 177. [Google Scholar] [CrossRef]
- Ji, H.; Liu, Y.; Wang, T.; Yuan, Q.; Chen, H.; Wang, P.; Janković, N.; Zhu, X.; Chen, X. Isothermal oxidation behaviors of NiCrAlY coatings at 1100 °C. Mater. Today Commun. 2025, 46, 112902. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.; Wang, S.; Zhao, Q.; Li, Y.; Ren, D.; Chen, G.; Zou, Y.; Ouyang, J.; Jia, D.; et al. Phase composition evolution and oxidation behavior of atmospheric plasma spraying Si and Si-HfO2 bond coats at 1300 °C. Corros. Sci. 2023, 222, 111439. [Google Scholar] [CrossRef]
- Ji, M.; Zhu, S.; Ma, Z. Research Progress on Thermal Protection Coatings for Metal Surfaces in Aerospace Applications. Surf. Technol. 2021, 50, 253–266. [Google Scholar] [CrossRef]
- Liao, Y.; Chen, M.; Wang, F.; ZHU, S. Self-healing metal enamel high-temperature protective coatings. Surf. Technol. 2020, 49, 25–34. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Liu, R.-J.; Wang, Y.-F.; Li, D.; Miu, H.-M. Research progress and prospect of high-temperature oxidation-resistant ceramic protective coatings for C/C composites. J. Chin. Ceram. Soc. 2025, 53, 688–699. [Google Scholar] [CrossRef]
- Deevi, S.C. Advanced intermetallic iron aluminide coatings for high temperature applications. Prog. Mater. Sci. 2021, 118, 100769. [Google Scholar] [CrossRef]
- Jiang, C.; Feng, M.; Chen, M.; Geng, S.; Wang, F. Research status of simple/modified aluminide coatings. Surf. Technol. 2021, 50, 33–42. [Google Scholar] [CrossRef]
- Li, C.; Xu, X.; Wang, S.; Cai, C.; Ju, S.; Huang, J.; Yang, S. Microstructure and properties of Al and Al-Cr coatings on nickel-based superalloy GH625 by a thermal diffusion process. Mater. Res. Express 2019, 6, 046426. [Google Scholar] [CrossRef]
- Yang, Y.F.; Jiang, C.Y.; Yao, H.R.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating. Corros. Sci. 2016, 113, 17–25. [Google Scholar] [CrossRef]
- Hua, J.; Sun, Z.; Zhuo, E.; Ai, C. Research progress on high-temperature oxidation-resistant coatings for TiAl alloys. Trans. Nonferrous Met. Soc. China 2025, 35, 1062–1079. [Google Scholar]
- Zheng, L.; Liu, E.; Zheng, Z.; Ning, L.; Tong, J.; Tan, Z.; Li, H. Effects of Y addition on the pre-oxidation and corrosion behaviours of the alumina/niobium aluminide coatings on the surface of niobium core. Corros. Sci. 2023, 213, 110991. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, F.; Cui, X.; Wang, J.; Xiong, T. Long-term oxidation behavior of silicon-aluminizing coating with an in-situ formed Ti5Si3 diffusion barrier on γ-TiAl alloy. Appl. Surf. Sci. 2022, 582, 152444. [Google Scholar] [CrossRef]
- Yang, H.; Wu, Y.; Sun, Q.; Yang, F.; Xia, C.; Xia, S.; Du, J. Study on High Temperature Properties of Yttrium-Modified Aluminide Coating on K444 Alloy by Chemical Vapor Deposition. Coatings 2024, 14, 750. [Google Scholar] [CrossRef]
- Li, S.; Xu, M.M.; Zhang, C.Y.; Niu, Y.S.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. Co-doping effect of Hf and Y on improving cyclic oxidation behavior of (Ni,Pt)Al coating at 1150 °C. Corros. Sci. 2021, 178, 109093. [Google Scholar] [CrossRef]
- Zeng, Y.; Wang, R.; Zhang, J.; Hou, J.; Tan, C.; Li, H. Liquid-phase-rich compensatory layer enabled self-healing in Si-SiO2/SiC-SiCw-Si bilayer anti-oxidation coating. Surf. Coat. Technol. 2026, 519, 132980. [Google Scholar] [CrossRef]
- Zhu, L.; Ren, X.; Wang, X.; Kang, X.; Zheng, R.; Feng, P. Microstructure and high-temperature oxidation resistance of MoSi2-ZrO2 composite coatings for Niobium substrate. J. Eur. Ceram. Soc. 2021, 41, 1197–1210. [Google Scholar] [CrossRef]
- Cai, Z.; Wu, Y.; Liu, H.; Tian, G.; Pu, R.; Piao, S.; Tang, X.; Liu, S.; Zhao, X.; Xiao, L. Formation and oxidation resistance of a new YSZ modified silicide coating on Mo-based alloy. Mater. Des. 2018, 155, 463–474. [Google Scholar] [CrossRef]
- Han, J.-Y.; Wang, L.; Hu, P.; Hu, B.-L.; Ma, S.-J.; Gao, L.-L.; Bai, R.; Wang, Q.; Feng, R.; Jin, B.; et al. Research progress in modification of MoSi2 coatings on surface of refractory metals and their alloys: A review. Rare Met. 2024, 44, 793–821. [Google Scholar] [CrossRef]
- Sun, L.; Fu, Q.-G.; Sun, J. Effect of SiO2 barrier scale prepared by pre-oxidation on hot corrosion behavior of MoSi2-based coating on Nb alloy. Corros. Sci. 2020, 176, 109051. [Google Scholar] [CrossRef]
- Han, J.; Wang, Q.; Long, J.; Zhao, W.; Wang, L.; Feng, R.; Jin, B.; Hu, B.; Hu, P.; Wang, K. Research progress on preparation technologies of molybdenum disilicide coatings. Powder Metall. Technol. 2024, 42, 674–684. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Li, Q.; Zhang, L.; Zhang, J.; Li, J.; Jin, H.; Chen, D. Research progress on high-temperature protective coatings for molybdenum and molybdenum alloy surfaces. Surf. Technol. 2023, 52, 48–63+74. [Google Scholar] [CrossRef]
- Zhu, L.; Ren, X.; Wang, G.; Kang, X.; Zhang, P.; Wang, X.; Feng, P. Preparation and 1500 °C oxidation behavior of crack-free bentonite doped MoSi2 protective coating on molybdenum. Corros. Sci. 2021, 184, 109379. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, Y.; Chen, L.; Shen, F.; Zhu, J. Micromorphology evolution, growth mechanism, and oxidation behaviour of the silicon-rich MoSi2 coating at 1200 °C in air. J. Mater. Res. Technol. 2024, 29, 491–503. [Google Scholar] [CrossRef]
- Wang, C.-C.; Li, K.-Z.; He, D.-Y.; Shi, X.-H. Oxidation behavior and mechanism of MoSi2-Y2O3 composite coating fabricated by supersonic atmospheric plasma spraying. Appl. Surf. Sci. 2020, 506, 144776. [Google Scholar] [CrossRef]
- Zhai, R.; Song, P.; Huang, T.; Li, C.; Hua, C.; Huang, W.; Li, Q.; Zheng, B.; Lu, J. Microstructure and oxidation behaviour of MoSi2 coating combined MoB diffusion barrier layer on Mo substrate at 1300 °C. Ceram. Int. 2021, 47, 10137–10146. [Google Scholar] [CrossRef]
- Ou, H.; Liu, Y.; Fan, K.; Zhang, Y.; Guo, L.; Liu, B.; Sun, J.; Fu, Q. Long term protection of silicide coating at 1700 °C in air with HfO2 modification. Corros. Sci. 2025, 255, 113122. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, J.; Fu, Q. Effect of mullite on the microstructure and oxidation behavior of thermal-sprayed MoSi2 coating at 1500 °C. Ceram. Int. 2020, 46, 10058–10066. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, J.; Fu, Q. Microstructure and oxidation behavior of plasma sprayed WSi2-mullite-MoSi2 coating on niobium alloy at 1500 °C. Surf. Coat. Technol. 2020, 400, 126210. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, Y.; Liu, R.; Yu, Y.; Duan, X.; Lei, Y.; Xia, H.; Jiang, Q.; Tang, J. Preparation of high-temperature antioxidant coatings on tantalum-based surfaces by atmospheric plasma spraying and their microstructural characterization. Surf. Coat. Technol. 2025, 501, 131928. [Google Scholar] [CrossRef]
- Chen, G.; Shao, W.; Wu, Y.; Xu, Y.; Yu, J.; He, D.; Guo, Y. Exploring oxygen adsorption and oxygen diffusion in B-modified NbSi2 alloy during high-temperature oxidation: First-principles calculations. J. Alloys Compd. 2025, 1038, 182970. [Google Scholar] [CrossRef]
- Ren, Y.; Qian, Y.; Xu, J.; Zuo, J.; Li, M. Ultra-high temperature oxidation resistance of ZrB2-20SiC coating with TaSi2 addition on siliconized graphite. Ceram. Int. 2019, 45, 15366–15374. [Google Scholar] [CrossRef]
- Shen, F.; Yu, L.; Fu, T.; Zhang, Y.; Wang, H.; Cui, K.; Wang, J.; Hussain, S.; Akhtar, N. Effect of the Al, Cr and B elements on the mechanical properties and oxidation resistance of Nb-Si based alloys: A review. Appl. Phys. A-Mater. 2021, 127, 851. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, T.; Yu, L.; Cui, K.; Wang, J.; Shen, F.; Zhang, X.; Zhou, K. Anti-Corrosion Coatings for Protecting Nb-Based Alloys Exposed to Oxidation Environments: A Review. Met. Mater. Int. 2022, 29, 1–17. [Google Scholar] [CrossRef]
- Fu, T.; Zhan, S.; Zhang, Y.; Shen, F.; Wang, H. Preparation of Si-rich NbSi2 coating on Nb surface by hot dip silicon-plating technology to improve the high-temperature oxidation resistance of pure Nb substrate. Ceram. Int. 2025, 51, 23341–23353. [Google Scholar] [CrossRef]
- Wang, S.; Ye, Z.; Ge, Y.; Zou, Y.; Zhang, T.; Zhao, X.; Wang, M.; Song, C.; Wang, Y.; Zhou, Y. High temperature oxidation behavior at 1250 °C: A new multilayer modified silicide coating design strategy on niobium alloys. J. Mater. Sci. Technol. 2025, 210, 159–169. [Google Scholar] [CrossRef]
- Ni, L.; Yang, Z.; Ma, K.; Wen, B.; Qu, D.; Yang, J. Study on microstructure and properties of TaSi2/MoSi2 coatings prepared by low-pressure plasma spraying. Therm. Spray Technol 2020, 12, 70–75. [Google Scholar]
- Lu, J.; Chen, Y.; Zhao, C.; Zhang, H.; Luo, L.; Xu, B.; Zhao, X.; Guo, F.; Xiao, P. Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium. Corros. Sci. 2019, 153, 178–190. [Google Scholar] [CrossRef]
- Tian, J.; Wang, C.; Song, P.; Huang, T.; Zhang, X.; Lei, J.; Yang, T.; Ji, V. Research progress on the high-temperature oxidation resistance and hot corrosion resistance of MCrAlY coatings. J. Mater. Sci. 2025, 60, 2224–2251. [Google Scholar] [CrossRef]
- Tao, S.; Peng, H.; Zhang, A.; Guo, H. Coating-by-design: Design a high-temperature oxidation and corrosion resistant Zr-doped MCrAlY coating fabricated by magnetron sputtering. Appl. Surf. Sci. Adv. 2025, 27, 100766. [Google Scholar] [CrossRef]
- Tan, K.J.; Liang, J.J.; Wang, X.G.; Tao, X.P.; Gong, J.; Sun, C.; Zhou, Y.Z.; Sun, X.F. Oxidation Performance and Interdiffusion Behaviour of two MCrAlY Coatings on a Fourth-Generation Single-Crystal Superalloy. Acta Metall. Sin. 2021, 35, 679–692. [Google Scholar] [CrossRef]
- Cojocaru, C.V.; Aghasibeig, M.; Irissou, E. NiCoCrAlX (X = Y, Hf and Si) Bond Coats by Cold Spray for High Temperature Applications. J. Therm. Spray Technol. 2022, 31, 176–185. [Google Scholar] [CrossRef]
- Ghadami, F.; Sabour Rouh Aghdam, A.; Ghadami, S. A comprehensive study on the microstructure evolution and oxidation resistance of conventional and nanocrystalline MCrAlY coatings. Sci. Rep. 2021, 11, 875. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, S.; Dong, J.; Yin, W.; Wu, H.; Tian, L.; Liu, G. Effect of Pre-Heat-Treatment on the Oxidation Resistance of MCrAlY Coatings: A Review. Coatings 2023, 13, 1222. [Google Scholar] [CrossRef]
- Duan, W.; Huang, B.; Li, Y.; Huang, X.; Zhou, M.; Qiang, W. Hf and Ta co-doping MCrAlY alloy to improve the lifetime of coatings. Surf. Coat. Technol. 2023, 468, 129781. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, X.; Chen, Z.; Shi, Y.; Liang, Y.; Zhang, M.; Sun, J.; Yu, Z.; Xu, P.; Wang, X.; et al. Microstructure evolution and oxidation behavior of in-situ oxide-dispersion-strengthened AlCoCrFeNi2.1 composite coatings manufactured by high-speed laser cladding. J. Mater. Sci. Technol. 2026, 244, 1–19. [Google Scholar] [CrossRef]
- Li, S.M.; Fu, L.B.; Zhang, W.L.; Li, W.; Sun, J.; Wang, T.G.; Jiang, S.M.; Gong, J.; Sun, C. Formation process and oxidation behavior of MCrAlY+AlSiY composite coatings on a Ni-based superalloy. J. Mater. Sci. Technol. 2022, 120, 65–77. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Y.; Zhou, J.; Zhuo, W.; Zhang, J.; Zeng, J.; Zhang, H.; Pei, Y.; Li, S.; Gong, S. Temperature-dependent evolution mechanism of interface microstructure between gradient MCrAlY coatings and nickel-based superalloy. Mater. Des. 2024, 237, 112585. [Google Scholar] [CrossRef]
- Ren, X.-R.; Wang, W.-G.; Sun, K.; Hu, Y.-W.; Xu, L.-H.; Feng, P.-Z. Preparation of MoSi2-modified HfB2-SiC ultra high temperature ceramic anti-oxidation coatings by liquid phase sintering. New Carbon Mater. 2022, 37, 603–614. [Google Scholar] [CrossRef]
- Xiao, L.; Deng, G.; Zhao, X.; Jiang, Y.; Chen, H.; Yu, Q.; Dong, H.; Li, J.; Liu, S.; Cai, Z. Preparation and oxidation properties of tantalum-based Yb2O3 modified MoSi2 ceramic coating. J. Eur. Ceram. Soc. 2025, 45, 117546. [Google Scholar] [CrossRef]
- Li, B.; Su, X.; Wang, R.; Hou, J.; Tan, C.; Liu, T.; Zhang, J. Mitigating matrix silicification and enhancing performance in coated C/C-SiC-HfB2 composites with a PyC layer. J. Eur. Ceram. Soc. 2026, 46, 118011. [Google Scholar] [CrossRef]
- Zhai, R.; He, X.; Huang, T.; Huang, Y.; Zhuang, Y.; Hua, C.; Xiong, X.; Meng, J.; Hakimi, N.; Song, P. Crack-healing and 1500 °C oxidation behavior of ZrB2- and HfB2- MoSi2 protective coating on TZM alloys. Eng. Fail. Anal. 2025, 179, 109794. [Google Scholar] [CrossRef]
- Chen, Y.; Hong, C.; Hu, C.; Hu, P.; Li, L.; Liu, J.; Liu, L.; Long, D.; Qiu, H.; Tang, S.; et al. Thermal protection ceramic materials for aerospace vehicles. Adv. Ceram 2017, 38, 311–390. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Wang, Y.; Peng, J.; Zhang, H.; Liu, J. Research progress on ZrB2-SiC based oxidation-resistant coatings for Cf/C composites. Rare Met. Mater. Eng. 2024, 53, 3259–3270. [Google Scholar]
- Ma, H.; Miao, Q.; Liang, W.; Liu, Y.; Lin, H.; Ma, H.; Zuo, S.; Xue, L. High temperature oxidation resistance of Y2O3 modified ZrB2-SiC coating for carbon/carbon composites. Ceram. Int. 2021, 47, 6728–6735. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Ma, Z.; Zhu, S.; Liu, L.; Xie, M.; Zhang, Z.; Wang, R. Oxidation ablation resistance of ZrB2-HfB2-SiC-TaSi2 coating prepared on C/C composite surface. Surf. Coat. Technol. 2023, 466, 129615. [Google Scholar] [CrossRef]
- Duan, Y.; Ren, J.; Lv, C.; Li, X.; Wu, Y. Effect of ZrB2 and Polyvinyl Butyral Content on the Oxidation Resistance of ZrB2-SiC Coatings Produced by Slurry Brushing Method. Adv. Eng. Mater. 2023, 25, 2300391. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Y.; Li, J.; Lv, J.; Shuai, K. Improved mechanical strength and oxidation resistance of SiC/SiC-MoSi2-ZrB2 coated C/C composites by a novel strategy. Corros. Sci. 2022, 205, 110419. [Google Scholar] [CrossRef]
- Zhang, P.; Fu, Q.; Cheng, C.; Sun, J.; Zhang, J.; Xu, M.; Zhu, X. Microstructure evolution of in-situ SiC-HfB2-Si ternary coating and its corrosion behaviors at ultra-high temperatures. J. Eur. Ceram. Soc. 2021, 41, 6223–6237. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Y.; Li, W.; Zhu, X.; Li, J.; Zhang, J.; Li, T. Microstructure evolution of HfB2-SiC/SiC coating for C/C composites during long-term oxidation at 1700 °C. Corros. Sci. 2022, 206, 110524. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhang, J.; Li, T.; Zhang, P.; Chen, R. Microstructure evolution and oxidation mechanism of HfB2-SiC coating on SiC-coated C/C composites at 1173 K and 1773 K. Ceram. Int. 2022, 48, 30807–30816. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, X.; Chen, Y.; Wang, P.; Kiryukhantsev-Korneev, P.V.; Levashov, E.A.; Shi, J.; Ren, X.; Kang, X.; Zhang, B.; et al. Enhancing oxygen-blocking properties of HfB2-MoSi2-SiC coating by CeO2 modification. J. Am. Ceram. Soc. 2024, 108, e20266. [Google Scholar] [CrossRef]
- Ding, W.; Zhou, L.; Zhang, J.; Fu, Q. Long-term oxidation of MoSi2-modified HfB2-SiC-Si/SiC-Si coating at 1700 °C. Surf. Eng. 2023, 39, 315–325. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Ren, X.; Ji, X.; Chen, Y.; Wu, B.; Kan, T.; Zhao, Y.; Chen, J.; Shi, D.; et al. Oxygen barrier resistance of HfB2-MoSi2-TaB2 coatings in a wide temperature region. Ceram. Int. 2023, 49, 25504–25515. [Google Scholar] [CrossRef]
- Zhang, M.; Ji, X.; Zhang, Y.; Chen, Y.; Wang, P.; Kiryukhantsev-Korneev, P.V.; Levashov, E.A.; Shi, J.; Ren, X.; Kang, X.; et al. Enhanced oxidation resistance of HfB2-SiC-ZrSi2 coating at 1700 °C through low-loss film-forming treatment. J. Am. Ceram. Soc. 2024, 107, 6678–6691. [Google Scholar] [CrossRef]
- Bai, Y.; Song, G.; He, X.; Qi, X.; Gao, J.; He, B.; Zhang, J. High-toughness ternary layered ceramics: From MAX phase to MAB phase. J. Mater. Eng. 2021, 49, 1–13. [Google Scholar]
- Kota, S.; Sokol, M.; Barsoum, M.W. A progress report on the MAB phases: Atomically laminated, ternary transition metal borides. Int. Mater. Rev. 2020, 65, 226–255. [Google Scholar] [CrossRef]
- Hanner, L.A.; Kota, S.; Barsoum, M.W. Formation mechanisms of Cr2AlB2, Cr3AlB4, and Fe2AlB2 MAB phases. Mater. Res. Lett. 2021, 9, 323–328. [Google Scholar] [CrossRef]
- Li, H.; Su, Y.; Hu, T.; Fan, H.; Zheng, X.; Song, J.; Zhang, R.; Hu, L. Progress in the Study of Ternary Layered MAB Phase Ceramics and Their Mechanical and Tribological Properties. Tribology 2025, 45, 1084–1100. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Wang, T.; Wang, C.; Xie, Z.; Wang, W.; Xin, T. Synthesis, microstructure and properties of MoAlB MAB phase films. Ceram. Int. 2023, 49, 23714–23720. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Xie, Z.; Wang, T.; Wang, C.; Zhao, Q.; Wang, B. Nanocapsule-inspired composite structure engineering of MoAlB thin films for enhanced oxidation resistance. Ceram. Int. 2025, 51, 25978–25989. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Pan, W.; Wang, W.; Tang, C. Research progress in surface strengthening technology of carbide-based coating. J. Alloys Compd. 2022, 905, 164062. [Google Scholar] [CrossRef]
- Nisar, A.; Hassan, R.; Agarwal, A.; Balani, K. Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems. Ceram. Int. 2022, 48, 8852–8881. [Google Scholar] [CrossRef]
- Xiao, J.; He, P.; Xue, L.; Sun, C.; Liang, X.; Cheng, J. Research progress on carbide ultra-high temperature ceramics for thermal protection of equipment. J. Mech. Eng. 2025, 61, 1–18. [Google Scholar]
- Pan, X.; Niu, Y.; Xu, X.; Zhong, X.; Shi, M.; Zheng, X.; Ding, C. Long time ablation behaviors of designed ZrC-SiC-TiC ternary coatings for environments above 2000 °C. Corros. Sci. 2020, 170, 108645. [Google Scholar] [CrossRef]
- Xu, X.; Pan, X.; Niu, Y.; Li, H.; Ni, D.; Huang, S.; Zhong, X.; Zheng, X.; Sun, J. Difference evaluation on ablation behaviors of ZrC-based and ZrB2-based UHTCs coatings. Corros. Sci. 2021, 180, 109181. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fu, Y.; Zhu, X.; Chen, R. Long-time ablation behavior of the multilayer alternating CVD-(SiC/HfC)3 coating for carbon/carbon composites. Corros. Sci. 2021, 189, 109586. [Google Scholar] [CrossRef]
- Du, W.; Zeng, F.; Gao, Y.; Wang, Z.; Chen, M.; Li, Z. Oxidation mechanism of HfC-TaC-B4C-SiC/ZrSiO4-glass coating with largely enhanced oxidation inhibition for C/C composites. Surf. Interfaces 2024, 53, 105100. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Li, H.; Zhang, J.; Fu, Y.; Su, Y. SiC/SiC-ZrSi2 coating with micro-pore to protect C/C composites against oxidation for long-life service at high temperatures. Corros. Sci. 2021, 191, 109780. [Google Scholar] [CrossRef]
- Huang, K.; Xia, Y.; Wang, A. High Temperature Oxidation and Oxyacetylene Ablation Properties of ZrB2-ZrC-SiC Ultra-High Temperature Composite Ceramic Coatings Deposited on C/C Composites by Laser Cladding. Coatings 2023, 13, 173. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, W.; Bu, H.; Chen, K.; Jiang, Y.; Liu, H.; Zeng, C. Antioxidant performance and oxidation mechanism of a liquid silicon infiltration (LSI) SiC–Si coating at an ultra-high temperature of 1873 K. Ceram. Int. 2023, 49, 34038–34052. [Google Scholar] [CrossRef]
- Yang, H.; Zhao, H.; Wang, T.; Liu, X.; Zhang, K.; Li, Z.; Gao, Y.; Liu, B. Preparation and antioxidant mechanism of TiSi2-Si-SiC/SiC bilayer coating on matrix graphite. J. Alloys Compd. 2021, 858, 157721. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, H.; Lai, T.; Liao, J.; Duo, S. Research progress on controllable preparation, structural characteristics and properties of nitride coatings. Mater. Prot. 2023, 56, 143–156+209. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Du, J.; Li, Q.; Yang, T.; Yan, P. Research progress on high-temperature protective coatings on titanium surfaces. Titan. Ind. Prog. 2017, 34, 1–8. [Google Scholar] [CrossRef]
- Fan, J.; Xu, Y.X.; Geng, D.; Chen, L.; Wang, Q. Improving the oxidation resistance of TiAlN/CrAlO coatings through CrAlON interlayer. Surf. Coat. Technol. 2024, 479, 130545. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y.; Yuan, Y.; Jia, C.; Yang, L. Microstructure, wear and oxidation resistance of Al-doped Ti-Si3N4 coatings by laser cladding. Surf. Coat. Technol. 2022, 429, 127942. [Google Scholar] [CrossRef]
- Du, W.; Zeng, F.; Dai, Y.; Gao, Y.; Chen, M.; Li, Z. Oxidation behavior and thermal-shock resistance of AO20/Si3N4 coating for carbon/carbon composites. Ceram. Int. 2024, 50, 21463–21472. [Google Scholar] [CrossRef]
- Yan, Q.; Chen, S.; Shi, H.; Gao, B.; Li, J.; Meng, S. Novel anti-oxidation coating prepared by polymer-derived ceramic for harsh environments up to 1200 °C. Surf. Coat. Technol. 2024, 494, 131420. [Google Scholar] [CrossRef]
- Dong, C.; Huang, J.; Cui, S.; Luo, J.; Zhou, Z.; Cheng, H.; Wen, Z.; Xu, J. Microstructure and high-temperature oxidation behavior of Al2O3/Cr composite coating on Inconel 718 alloy. J. Mater. Res. Technol. 2024, 28, 4498–4507. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, F.; Wu, W. Effect of Al2O3 and enamel coatings on 900 °C oxidation and hot corrosion behaviors of gamma-TiAl. Mater. Sci. Eng. A-Struct. 2000, 276, 70–75. [Google Scholar]
- Vourdas, N.; Marathoniti, E.; Pandis, P.K.; Argirusis, C.; Sourkouni, G.; Legros, C.; Mirza, S.; Stathopoulos, V.N. Evaluation of LaAlO3 as top coat material for thermal barrier coatings. Trans. Nonferrous Met. Soc. China 2018, 28, 1582–1592. [Google Scholar] [CrossRef]
- Zhou, Y.; Yao, Z.; Yao, Y. High-temperature oxidation resistance of YSZ-Al2O3 composite coatings prepared by sol-gel method on GH3039 alloy surface. Hot Work. Technol. 2018, 47, 151–155. [Google Scholar] [CrossRef]
- Mao, F.; Niu, Y.; Zhong, X.; Wang, Y.; Zhu, X.; Zhang, L.; Li, Q.; Zheng, X. Oxidation behaviors and mechanisms of Yb2O3-doped silicon coatings fabricated by vacuum plasma spray. Ceram. Int. 2021, 47, 19906–19913. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, J.; Zhang, L.; Fu, Y.; Ye, Z.; Wang, Y.; Wei, D.; Zhou, Y. Microstructure and ablation behavior of TiAl alloy with in-situ HfSi2-HfO2-SiO2 nanocomposite ceramic coating by LPDS technique. Surf. Coat. Technol. 2024, 476, 130268. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Film. 2010, 518, 1851–1878. [Google Scholar] [CrossRef]
- Ma, C.; Yu, W.; Ma, Y.; Ma, G.; Wang, H. Atomic level out-diffusion and interfacial reactions of MAX phases in contact with metals and air. J. Eur. Ceram. Soc. 2024, 44, 1–22. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, A.; Wang, Z.; Wang, K.; Zhang, J.; Xu, K.; Xu, Y.; Zhou, S.; Wang, A. MAX phase coatings: Synthesis, protective performance, and functional characteristics. Mater. Horiz. 2025, 12, 1689–1710. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, Y.; Li, S.; Wang, X.; Ying, G.; Xia, Q.; Zhang, P. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. J. Adv. Ceram. 2021, 10, 1194–1242. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, Y.; Li, M. Oxidation behaviour of Ti3SiC2-based ceramic at 900–1300 °C in air. Corros. Sci. 2001, 43, 1095–1109. [Google Scholar] [CrossRef]
- Chen, W.; Yu, W.; Ma, C.; Ma, G.; Zhang, L.; Wang, H. A review of novel ternary nano-layered MAX phases reinforced AZ91D magnesium composite. J. Magnes. Alloys 2022, 10, 1457–1475. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, C.; Zhao, Z.; Yu, Z.; Wang, Z.; Liu, H.; Zhang, N.; Yang, W.; Wu, G. Microstructure and mechanical properties of Ti2AlC particle and in-situ TiAl3 reinforced pure Al composites. Mater. Sci. Eng. A 2020, 785, 139310. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, H.; Mo, T.; Ren, L.; Tian, Y.; Zhu, L. High-temperature and interfacial oxidation of MAX phase-reinforced composite coatings deposited by laser cladding on Zr alloy substrates. Ceram. Int. 2023, 49, 38672–38682. [Google Scholar] [CrossRef]
- Zha, X.-H.; Ma, X.; Du, S.; Zhang, R.-Q.; Tao, R.; Luo, J.-T.; Fu, C. Role of the A-Element in the Structural, Mechanical, and Electronic Properties of Ti3AC2 MAX Phases. Inorg. Chem. 2021, 61, 2129–2140. [Google Scholar] [CrossRef]
- Zhang, X.; Li, S.; Zhang, W.; Bei, G. Recent progress in preparation, microstructure and properties of Cr2AlC MAX phase coatings. J. Eur. Ceram. Soc. 2025, 45, 117555. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, H.; Ren, L.; Zheng, Y.; Yu, K.; Zhang, Z.; Mo, T.; Lin, B.; Fu, G. Microstructural characteristics and high-temperature oxidation behavior of Ti–Al–N MAX phase composite coatings. Surf. Coat. Technol. 2026, 520, 133043. [Google Scholar] [CrossRef]
- Mengis, L.; Oskay, C.; Laska, N.; Galetz, M.C. Synthesis, oxidation resistance and mechanical properties of a Cr2AlC-based MAX-phase coating on TiAl. Intermetallics 2023, 163, 108039. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, J.; Xu, B.; Liu, Y.; Ke, P.; Wang, A. Reducing the self-healing temperature of Ti2AlC MAX phase coating by substituting Al with Sn. J. Eur. Ceram. Soc. 2020, 40, 197–201. [Google Scholar] [CrossRef]
- Parthiban, K.; Bysakh, S.; Date, A.; Kandare, E.; Ghosh, S. Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications. Mater. Today Commun. 2024, 41, 111090. [Google Scholar] [CrossRef]
- Yu, Z.; Feng, M.; Chen, M.; Shen, C.; Zhu, S.; Wang, F. Temporary enamel coatings for oxidation protection of Ti-6Al-4V at its hot working temperature of 1200 °C. J. Alloys Compd. 2020, 815, 152295. [Google Scholar] [CrossRef]
- Li, F.; Chen, M.; Wang, Q.; Wang, F. Effect of Al2O3 content on microstructure and oxidation behavior of silicate enamel coatings on a Ni-based superalloy at 1000 °C. Ceram. Int. 2022, 48, 25445–25457. [Google Scholar] [CrossRef]
- Gu, Y.; Li, R.; Zeng, F.; Jiang, Z.; Shi, X.; Wu, A.; Huang, L. Microstructure evolution and oxidation resistance of CaO-Al2O3-SiO2/ZrO2-borosilicate multilayer coating for C/C composites. Corros. Sci. 2021, 191, 109723. [Google Scholar] [CrossRef]
- Fan, S.; Ma, X.; Ji, B.; Li, Z.; Xie, Z.; Deng, J.; Zhang, L.; Cheng, L. Oxidation resistance and thermal shock properties of self-healing SiCN/borosilicate glass-B4C-Al2O3 coatings for C/C aircraft brake materials. Ceram. Int. 2019, 45, 550–557. [Google Scholar] [CrossRef]
- Zhou, L.; Huang, J.; Cao, L.; Hao, W.; Wu, W. A novel design of oxidation protective β-Y2Si2O7 nanowire toughened Y2SiO5/Y2O3-Al2O3-SiO2 glass ceramic coating for SiC coated carbon/carbon composites. Corros. Sci. 2018, 135, 233–242. [Google Scholar] [CrossRef]
- Gao, Y.; Zeng, F.; Wang, Z.; Li, Y.; Liu, H.; Peng, Y.; Gu, Y.; Zhang, F. Enhanced oxidation resistance and failure mechanism of carbon/carbon composites with ZrO2/ZrSiO4-glass composite coating. Appl. Surf. Sci. 2022, 601, 154208. [Google Scholar] [CrossRef]
- Yin, H.; Li, H.; Chen, J.; Wang, Y.; Zhang, S.; Xu, L.; Li, T.; Zeng, Z.; Tang, J. Research progress and application of phosphate coatings. Surf. Technol. 2021, 50, 232–241. [Google Scholar] [CrossRef]
- Han, R.; Tariq, N.U.H.; Li, J.; Kong, L.; Liu, J.; Shan, X.; Cui, X.; Xiong, T. A novel phosphate-ceramic coating for high temperature oxidation resistance of Ti65 alloys. Ceram. Int. 2019, 45, 23895–23901. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Chen, F.; Chen, Z.; Tang, H.-X.; Zhao, J.; Zhao, Y.-B.; Xiao, P. Comparison of oxidation resistance behavior between Y3+ and Zr4+ modified aluminum phosphate impregnated graphite. Surf. Coat. Technol. 2021, 423, 127629. [Google Scholar] [CrossRef]
- Zhao, F.; Niu, H.; Kong, L. Study on the effect of phosphate coatings on high-temperature oxidation resistance of Ti65 alloy. Foundry Equip. Technol. 2024, 4, 74–81. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Zhou, L.; Lei, P.; Liu, J.; Wang, F.; Xiang, X.; Wu, H.; Wang, W.; Wang, F. Preparation and High-Temperature Resistance Properties of Phenolic Resin/Phosphate Hybrid Coatings. Materials 2024, 17, 2081. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Hu, T.; Zhang, D.; Li, B.; Xiao, H. Enhancing the high-temperature oxidation performance of AlCrTiSiN coating by in-situ generation of multi-layer antioxidant composite structures. Corros. Sci. 2024, 233, 112097. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Guo, C.; Chen, Y.; Liang, J.; Zhang, J.; Zhang, J.; Guo, L. Ablation resistance of ZrC-based composite coating with multi-layer structure for carbon/carbon composites above 2200 °C. Corros. Sci. 2022, 207, 110600. [Google Scholar] [CrossRef]
- Zhang, W.; Qiao, Y.; Guo, X.; Li, L.; Nan, X. Microstructure characteristics and oxidation behavior of a dense Si-Cr-Fe-Ti coating with a multi-layer structure on Nb-Si based alloy by slurry sintering. Corros. Sci. 2025, 246, 112743. [Google Scholar] [CrossRef]
- Hu, D.; Fu, Q.; Liu, B.; Zhou, L.; Sun, J. Multi-layered structural designs of MoSi2/mullite anti-oxidation coating for SiC-coated C/C composites. Surf. Coat. Technol. 2021, 409, 126901. [Google Scholar] [CrossRef]
- Tang, P.; Hu, C.; Pang, S.; Jiang, Y.; Liang, B.; Wang, L.; Tang, S. Self-densification behavior, interfacial bonding and cyclic ablation resistance of HfSi2-ZrSi2 modified SiC/ZrB2-SiC/SiC coating for Cf/SiC composite. Corros. Sci. 2023, 219, 111223. [Google Scholar] [CrossRef]
- Chen, P.; Pan, L.; Xiao, P.; Li, Z.; Pu, D.; Li, J.; Pang, L.; Li, Y. Microstructure and anti-oxidation properties of Yb2Si2O7/SiC bilayer coating for C/SiC composites. Ceram. Int. 2019, 45, 24221–24229. [Google Scholar] [CrossRef]
- Quan, H.; Sui, S.; Wang, L.; Luo, R.; Dong, X. A low-temperature preparation strategy of SiC/ZrB2-CrSi2-Si/SiC multilayer oxidation-resistant coating for C/C composites: Process, kinetics and mechanism research. Appl. Surf. Sci. 2021, 562, 149993. [Google Scholar] [CrossRef]
- Gai, W.; Zhang, Y.; Zhang, J.; Chen, H.; Chen, G.; Kong, J.A.; Fu, Y. A strategy to improve the anti-ablation performance of C/C composites under cyclic oxyacetylene flame: SiC/HfB2 multi-layer alternating coatings prepared by CVD. J. Alloys Compd. 2025, 1015, 178803. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhang, J.; Li, T.; Li, J.; Chen, R. A gradient composite coating to protect SiC-coated C/C composites against oxidation at mid and high temperature for long-life service. J. Eur. Ceram. Soc. 2021, 41, 123–131. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Dong, S.; Cui, T.-Y.; Xin, J.-Q.; Chen, G.-Q.; Hong, C.-Q.; Zhang, X.-H. Novel gradient ZrB2–MoSi2–SiC dense layer with enhanced emissivity and long-term oxidation resistance at ultra-high temperatures. Rare Met. 2024, 44, 2043–2058. [Google Scholar] [CrossRef]
- Guan, X.; Xu, X.; Hong, W.; Tao, X.; Wu, J.; Du, H.; Liu, J. Double-layer gradient MoSi2-borosilicate glass coating prepared by in-situ reaction method with high contact damage resistance and interface bonding strength. J. Alloys Compd. 2020, 822, 153720. [Google Scholar] [CrossRef]
- Zhang, B.; Yi, M.; Xie, A.; Zhou, Y.; Ning, Y.; Feng, Z. A novel gradient CrSi2-ZrSi2-SiC-Si coating for long-term oxidation protection of C/C composites at 1773 K. J. Eur. Ceram. Soc. 2024, 44, 1534–1542. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Wang, G.; Wang, W.; Liu, H.; Xiao, X.; Li, H.; Fan, Z. Thermal stability and abrasion resistance of NiCoCrAlYTa/Al2O3 gradient abrasive coating for blade tips by vacuum infiltration sintering. Surf. Coat. Technol. 2025, 511, 132312. [Google Scholar] [CrossRef]
- Chen, L.; Lei, Y.; Li, W.; Zhang, J.; Wang, J. Thermal stability and performance of optimized ZrCx diffusion barriers in ceramic coating systems for ATF applications. J. Am. Ceram. Soc. 2021, 104, 5424–5431. [Google Scholar] [CrossRef]
- Li, W.; Wang, Q.; Sun, C. Research progress on diffusion barrier layers of high-temperature protective coatings. Mater. Rev. 2009, 23, 30–34. [Google Scholar]
- Zhang, Y.; Jiang, H.; Tian, S.; Zhang, S.; Li, C. Research progress on high-temperature protection and thermal barrier coating systems for TiAl-based alloys. Mater. Rev. 2025, 39, 158–167. [Google Scholar]
- Li, Y.; Xu, J.; Li, J.; Li, Y.; Ma, K.; Wang, W.; Zhang, X.; Zhang, Y.; Li, M. Microstructure evolution and cyclic oxidation performance of Cr2AlC transition layer as active diffusion barrier for Ni-based superalloy and NiCrAlY coating. Corros. Sci. 2023, 222, 111416. [Google Scholar] [CrossRef]
- Li, Y.; Ma, K.; Xu, J.; Li, J.; Li, Y.; Zhang, Y.; Zuo, J.; Li, M. Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy. Corros. Sci. 2024, 226, 111696. [Google Scholar] [CrossRef]
- Xu, J.; Xiao, L.; Zhang, Y.; Deng, G.; Liu, G.; Wu, R.; Shen, H.; Zhao, X.; Liu, S.; Cai, Z. Ultra-high temperature oxidation resistance of a MoSi2 composite coating with TaB2 diffusion barrier on tantalum alloy. Corros. Sci. 2023, 224, 111563. [Google Scholar] [CrossRef]
- Xu, M.M.; Li, S.; Dong, Z.H.; Liu, H.; Wang, J.M.; Bao, Z.B.; Zhu, S.L.; Wang, F.H. High temperature performance and interface evolution of a NiCoCrAlY coating with Pt modification and Re-based diffusion barrier. Surf. Coat. Technol. 2023, 463, 129510. [Google Scholar] [CrossRef]
- Liu, B.; Sun, J.; Guo, L.; Shi, H.; Feng, G.; Feldmann, L.; Yin, X.; Riedel, R.; Fu, Q.; Li, H. Materials design of silicon based ceramic coatings for high temperature oxidation protection. Mater. Sci. Eng. R Rep. 2025, 163, 100936. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, L.; Zhang, J.; Fu, Q. Effect of TiB2 on the self-crack-healing ability of SiC-Si coating at 1300 °C. Surf. Coat. Technol. 2021, 425, 127675. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Zhang, J.; Li, T.; Jung, I.-H.; Su, Y.; Gai, W. A low-temperature prepared composite coating to protect SiC-coated C/C composites against oxidation in a wide temperature range for long-life service. J. Eur. Ceram. Soc. 2023, 43, 4349–4362. [Google Scholar] [CrossRef]
- Wang, L.; Fu, Q.; Zhao, F.; Zhao, Z. Constructing self-healing ZrSi2-MoSi2 coating for C/C composites with enhanced oxidation protective ability. Surf. Coat. Technol. 2018, 347, 257–269. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Fu, Q. The improvement of the self-healing ability of MoSi2 coatings at 900–1200 °C by introducing SiB6. J. Eur. Ceram. Soc. 2020, 40, 2896–2906. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, M.; Sun, W.; Ren, X. Oxidation protection of B4C modified HfB2-SiC coating for C/C composites at 1073–1473 K. Ceram. Int. 2022, 48, 3206–3215. [Google Scholar] [CrossRef]
- Hu, D.; Fu, Q.; Zhou, L.; Liu, B.; Cheng, C.; Li, X.; Sun, J. Self-healing improvement strategy of thermally sprayed MoSi2 coating at 1773 K: From calculation to experiment. Corros. Sci. 2021, 189, 109599. [Google Scholar] [CrossRef]
- Lin, H.; Liang, W.; Miao, Q.; Qi, Y.; Zhou, S.; Jia, F.; Lan, H.; Xu, S. Investigation of the microstructure and oxidation behavior of monolayer and bilayer ZrB2-SiC-Y2O3/SiC coatings on C/C composites. Surf. Coat. Technol. 2024, 487, 131007. [Google Scholar] [CrossRef]
- Jia, J.; Lu, D.; Jia, S.; Ni, Z.; Su, L.; Niu, M.; Peng, K.; Wang, H. Gradient Lamellar SiC Nanowire Networks with Dense Coating for High-Performance Reusable Thermal Protection Materials. ACS Appl. Mater. Interfaces 2025, 17, 27136–27143. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; Yang, L.; Sun, W.; Zhu, S.; Wang, F. Nanocrystalline coatings on superalloys against high temperature oxidation: A review. Corros. Commun. 2021, 1, 58–69. [Google Scholar] [CrossRef]
- Wu, B.; Ni, N.; Fan, X.; Zhao, X.; Xiao, P.; Guo, F. Strength degradation of SiC fibers with a porous ZrB2-SiC coating: Role of the coating porous structure. J. Eur. Ceram. Soc. 2020, 40, 961–971. [Google Scholar] [CrossRef]
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manukumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, W.; Xiong, X.; Liu, F.; Luan, X. Ablation characteristics of mosaic structure ZrC-SiC coatings on low-density, porous C/C composites. J. Mater. Sci. Technol. 2019, 35, 2785–2798. [Google Scholar] [CrossRef]
- Yang, S.; Yang, L.; Chen, M.; Wang, J.; Zhu, S.; Wang, F. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation. Acta Mater. 2021, 205, 116576. [Google Scholar] [CrossRef]
- Chen, C.; Li, W.; Zhen, Q.; Li, R.; Li, X.; Wang, J. In-situ SiC-SiCw layer enhances HfC-HfB2-SiC coatings for 2500 °C ablation. Surf. Coat. Technol. 2025, 509, 132184. [Google Scholar] [CrossRef]
- Xie, C.; Song, S.; He, G.; Mao, Z.; Ma, C.; Zhang, T.; Hu, P.; Zhen, Q. The toughening design of multi-layer antioxidation coating on C/C matrix via SiC-SiCw transition layer grown in-situ. J. Eur. Ceram. Soc. 2022, 42, 43–51. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, X. Application status and prospect of plasma spraying technology in engineering ceramic coating preparation. Mater. Rev. 2024, 38, 52–61. [Google Scholar]
- Judas, J.; Zapletal, J.; Adam, O.; Řehořek, L.; Jan, V. Microstructural stability and precipitate evolution of thermally treated 7075 aluminum alloy fabricated by cold spray. Mater. Charact. 2024, 216, 114259. [Google Scholar] [CrossRef]
- Sun, W.; Chu, X.; Lan, H.; Huang, R.; Huang, J.; Xie, Y.; Huang, J.; Huang, G. Current Implementation Status of Cold Spray Technology: A Short Review. J. Therm. Spray Technol. 2022, 31, 848–865. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Q.; Li, F. Post-treatment technology of cold spraying and its research progress. Acta Metall. Sin. 2025, 70, 1449–1468. [Google Scholar]
- Ding, R.; Wang, X.; Hu, C.; Zheng, J. Research status of material systems for laser cladding technology. Hot Work. Technol. 2025, 54, 1–9. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, X.; Cui, M.; Cheng, Y.; Zhang, J.; Lian, Y. Research progress on high-temperature corrosion-resistant coatings for titanium alloys. Mater. Prot. 2025, 58, 1–12. [Google Scholar] [CrossRef]
- Dai, W.; Zhang, X.; Li, C.; Yao, G. Effect of thermal conductivity on micro-arc oxidation coatings. Surf. Eng. 2022, 38, 44–53. [Google Scholar] [CrossRef]
- Ji, R.; Wang, S.; Zhao, X.; Zou, Y.; Zhang, T.; Qian, X.; Chen, G.; Wang, Y.; Ouyang, J.; Jia, D.; et al. Enhanced wear resistance, corrosion behavior, and thermal management in magnesium alloys with PEO coatings. Surf. Coat. Technol. 2024, 494, 131438. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Zou, Y.; Chen, G.; Wang, Z.; Ouyang, J.; Jia, D.; Zhou, Y. Research progress on micro-nano pore regulation and functional application of micro-arc oxidation coatings. Surf. Technol. 2021, 50, 1–22. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.; Liu, Y.; Yang, B.; Wu, T. Effect of HfO2 addition on characteristics of micro-arc oxidation films on titanium alloys. Rare Met. Mater. Eng. 2023, 52, 3452–3460. [Google Scholar]
- Nourpoor, P.; Javadian, S.; Sabour Rouh Aghdam, A.; Ghadami, F. Microstructure Investigation and Cyclic Oxidation Resistance of Ce-Si-Modified Aluminide Coating Deposited by Pack Cementation on Inconel 738LC. Coatings 2022, 12, 1491. [Google Scholar] [CrossRef]
- Wang, J.; Li, B.; Li, R.; Chen, X.; Zhang, G. Establishing multilayered coating on Mo-12Si-8.5 B alloy by Si pack cementation and its oxidation behavior at 900 °C–1300 °C. Mater. Corros. 2021, 72, 1328–1337. [Google Scholar] [CrossRef]
- Shi, H.; Fu, Q.; Liu, B.; Liu, F. Effect of porous pre-coating on the phase composition and oxidation protective performance of SiC coating by gaseous silicon infiltration. Surf. Coat. Technol. 2024, 480, 130597. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Tao, X.; Fan, H.; Liu, Z.; Ling, Y.; Guo, L. Preparation and oxidation behaviour of MoSi2-SiC-Si-ZrB2 composite coatings on carbon surface via laser cladding. Adv. Appl. Ceram. 2022, 121, 202–210. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, S.; Zou, Y.; Chen, G.; Wen, L.; Ouyang, J.; Jia, D.; Zhou, Y. ZrSi2/SiO2-Nb2O5/NbSi2 multi-layer coating formed on niobium alloy by HAPC combined with LPDS: Microstructure evolution and high temperature oxidation behavior. Corros. Sci. 2022, 206, 110460. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, S.; Zou, Y.; Chen, G.; Wen, L.; Zhang, G.; Zhao, L.; Ouyang, J.; Jia, D.; et al. High-temperature oxidation resistance and high emissivity of a novel NbSi2/SiO2-Nb2O5/MoSi2-Yb2O3 multilayer coating on Nb substrate for thermal protection. Corros. Sci. 2023, 224, 111519. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, S.; Zou, Y.; Chen, G.; Wen, L.; Zhang, G.; Zhao, L.; Ouyang, J.; Jia, D.; et al. Enhanced high-temperature oxidation resistance of HfSi2-modified silicon based multilayer ceramic coating on Nb alloy prepared by a novel strategy. J. Eur. Ceram. Soc. 2023, 43, 4717–4730. [Google Scholar] [CrossRef]
- Ma, J.; Liu, S.-Z.; Chang, X.; Feng, Z.-H.; Li, J.-H.; Wang, J.-G.; Fan, M.-Q. Effect of Al2O3/SiO2 micro-stacked composite coatings on the high-temperature performance of AISI 304 steel. Ceram. Int. 2025, 51, 25788–25796. [Google Scholar] [CrossRef]
- Yu, S.; Chen, G.; Fu, J.; Wang, S.; Zhao, Q.; Li, Y.; Ren, D.; Zou, Y.; Wang, Y.; Ouyang, J.; et al. Yb2SiO5-Yb2Si2O7 gradient environment barrier coating: Rational design and corrosion behavior in water vapor environment at 1300 °C. J. Eur. Ceram. Soc. 2024, 44, 6097–6112. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, Y. Initial oxidation of 3C-SiC (111) in oxidizing atmosphere containing water vapor: H2O adsorption from first-principles calculations. Mater. Today Commun. 2021, 26, 102072. [Google Scholar] [CrossRef]
- Fan, K.; Guo, L.; Ou, H.; Li, H.; Sun, J. Microstructure and phase evolution of Yb2SiO5/MoSi2-Mullite environmental barrier coatings on niobium alloy at 1500 °C. Corros. Sci. 2023, 221, 111371. [Google Scholar] [CrossRef]
- Ou, H.; Fan, K.; Guo, L.; Zhang, Y.; Wang, Y.; Sun, J.; Fu, Q. Corrosion behavior of Al2O3-modified Yb2SiO5 environmental barrier coating under water vapor conditions at 1500 °C. J. Eur. Ceram. Soc. 2024, 44, 1202–1216. [Google Scholar] [CrossRef]
- Ou, H.; Gao, Z.; Fan, K.; Zhang, Y.; Sun, J.; Fu, Q. Investigation of ZrO2-toughened Yb2SiO5 environmental barrier coating on Nb alloy under water-vapor corrosion at 1500 °C. Corros. Sci. 2024, 236, 112255. [Google Scholar] [CrossRef]
- Li, X.; Zou, J.; Shi, Q.; Dai, M.; Lin, S.; Tang, P.; Su, Y. Molten salts induced hot corrosion of high temperature protective coatings: Research progress. Rare Met. Mater. Eng. 2022, 51, 3989–3997. [Google Scholar]
- Hu, Q.; Geng, S.; Wang, J.; Wang, F.; Sun, Q.; Xia, S.; Wu, Y. Effects of solid NaCl and water vapour on hot corrosion behaviour of Inconel 718 superalloy and its aluminide coating. Mater. Chem. Phys. 2023, 309, 128416. [Google Scholar] [CrossRef]
- Hu, Q.; Geng, S.; Wang, J.; Wang, F.; Sun, Q.; Xia, S.; Wu, Y. Solid/Molten Na2SO4-Induced Hot Corrosion Behaviors of Mar-M247 Alloy with CVD Aluminide Coatings. High Temp. Corros. Mater. 2024, 101, 283–307. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Cao, G.; Chen, C.; Zhu, Y.; Serdechnova, M.; Blawert, C.; Zheludkevich, M.L.; Zou, Y.; Ouyang, J.; et al. High temperature oxidation and hot corrosion behaviors of PEO and PEO/polysilazane preceramic-based dual-layer coatings on Ti6Al4V alloy. Corros. Sci. 2023, 216, 111076. [Google Scholar] [CrossRef]
- Sun, L.; Fu, Q.-G.; Sun, J.; Zhang, G.-P. Comparison investigation of hot corrosion exposed to Na2SO4 salt and oxidation of MoSi2-based coating on Nb alloy at 1000 °C. Surf. Coat. Technol. 2020, 385, 125388. [Google Scholar] [CrossRef]
- Sun, L.; Fu, Q.-G.; Sun, J. Hot corrosion of SiO2-Ta2O5 binary scale on MoSi2-based ceramics. Corros. Sci. 2021, 185, 109413. [Google Scholar] [CrossRef]
- Huang, Y.; Zeng, J.; Dong, S.; Lu, K.; Liao, H.; Mao, C.; Jiang, J.; Deng, L.; Cao, X. Compatible performance of low thermal conductivity and high infrared radiation of Sm2O3-HfO2 series ceramics applied for thermal protection coatings. Ceram. Int. 2022, 48, 6372–6384. [Google Scholar] [CrossRef]
- Wang, S.; Ye, Z.; Zhang, H.; Wang, Y.; Zhang, T.; Zou, Y.; Ouyang, J.; Jia, D.; Zhou, Y. High-entropy strategy for high-temperature broadband infrared radiation and low thermal conductivity. Ceram. Int. 2024, 50, 18806–18813. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Ge, Y.; Chen, G.; Zou, Y.; Wang, Z.; Wen, L.; Zhang, G.; Zhao, L.; Wang, Y.; et al. Multilayer synergistic design of NbSi2/Nb2O5-SiO2/MoSi2 ceramic coating on niobium alloys for multiple thermal protection properties. J. Eur. Ceram. Soc. 2024, 44, 2471–2485. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Wang, Y.; Ge, Y.; Zou, Y.; Wang, Z.; Zhao, X.; Wen, L.; Zhang, G.; Zhao, L.; et al. Enhanced hot corrosion resistance and thermal radiation property of NbSi2/Nb2O5-SiO2/SiC ceramic coating for niobium alloys thermal protective system. Surf. Coat. Technol. 2024, 479, 130485. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Zhang, J.; Jiang, S.; Yin, S.; Ding, J.; Wu, Y.; Wu, J.; Chen, X.; Xia, X.; et al. Cyclic oxidation behavior of Ni3Al-basedsuperalloy. Vacuum 2019, 169, 108938. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Hu, S.; Jiang, P.; Song, J.; Huang, X. Corrosion resistance and thermal shock resistance of ScxTa0.5−xYSZ at high temperatures. Ceram. Int. 2021, 47, 33309–33314. [Google Scholar] [CrossRef]
- Wang, T.; Yang, Z.; Chen, S.; Sun, P. A Gauss Laser Pinning Method for Enhancing the Thermal Shock Resistance of Sprayed NiCoCrAlY Coatings. J. Therm. Spray Technol. 2025, 34, 2015–2025. [Google Scholar] [CrossRef]
- Yang, Y.F.; Ren, S.X.; Ren, P.; Wang, Q.W.; Bao, Z.B.; Li, W.; Zhu, S.L.; Wang, F.H. Hot corrosion and cyclic oxidation performance of a PtAl2-dispersed (Ni,Pt)Al coating prepared by low-activity high-temperature aluminizing. J. Alloys Compd. 2022, 911, 164978. [Google Scholar] [CrossRef]
- Zhang, W.L.; Li, S.M.; Fu, L.B.; Li, W.; Sun, J.; Wang, T.G.; Jiang, S.M.; Gong, J.; Sun, C. Preparation and cyclic oxidation resistance of Hf-doped NiAl coating. Corros. Sci. 2022, 195, 110014. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Sun, J.; Yuan, R.; Zhang, L.; Zhang, Y.; Li, T. The effect of HfB2 content on the oxidation and thermal shock resistance of SiC coating. Surf. Coat. Technol. 2018, 339, 124–131. [Google Scholar] [CrossRef]
- Wang, D.; Lin, S.-S.; Duan, D.-Y.; Liu, M.-X.; Yin, Z.-F.; Qiu, Y.; Ye, F.-X.; Dai, M.-J.; Yang, H.-Z.; Zhou, K.-S. Thermal shock resistance of Cr/CrN/Cr/CrAlN multilayer anti-erosion coating. Surf. Coat. Technol. 2023, 470, 129776. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, F.; Gao, B.; Chen, H.; Zhang, F.; Gu, Y. Durable anti-oxidation mechanism and failure analysis of the ZrSiO4 compound glass coating for carbon/carbon composites. Surf. Coat. Technol. 2018, 349, 233–241. [Google Scholar] [CrossRef]
- Wu, G.; Yin, Y.; Wang, R.; Li, L.; Wang, Y.; Wen, C.; Su, L.; Lei, L.; Yao, J. High-temperature oxidation and thermal shock resistance of laser-assisted PEO ceramic coatings on Ti6Al4V alloy. Ceram. Int. 2025, 51, 32326–32338. [Google Scholar] [CrossRef]
- Li, F.; Zhu, L.A.; Zhang, K.; Wang, Z.; Ye, Y.; Bai, S.; Li, S.; Zhang, Z.; Tang, Y. High heat flux ablation behaviors of Ir-Hf coatings in wind tunnel tests up to 6.6 MW/m2. Mater. Today Commun. 2024, 39, 109288. [Google Scholar] [CrossRef]
- Ma, J.; Kou, S.; Yang, S.; Liu, Y.; Luan, C.; Wang, P.; Fan, S. Ablation performance of C/C-ZrC-SiC composites with in-situ YSi2-doped ZrC-SiC-ZrSi2 coating under oxyacetylene torch. Corros. Sci. 2022, 209, 110802. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, S.; Han, D.; Dai, M.; Zhong, X.; Niu, Y.; Zheng, X. Effect of different SiC/TaSi2 contents on ablation behavior of ZrB2 coating. Corros. Sci. 2022, 205, 110424. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Zou, Y.; Chen, G.; Zhao, X.; Wen, L.; Zhang, G.; Zhao, L.; Wang, Y.; Zhou, Y. A promising high-temperature thermal protection performance of silicide-based ceramic coating based on multi-particles/multilayer synergistic design strategy. Chem. Eng. J. 2024, 496, 153556. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Wang, Y.; Zou, Y.; Chen, G.; Wen, L.; Zhang, G.; Zhao, L.; Ouyang, J.; Jia, D.; et al. Microstructural evolution and ablation behaviors of NbSi2/SiO2-Nb2O5/X (X = MoSi2, MoSi2-Yb2O3, MoSi2-Yb2O3-ZrC) multilayer coatings on Nb alloy in different ablation environments. Ceram. Int. 2024, 50, 10497–10514. [Google Scholar] [CrossRef]
- Qiang, X.; Li, H.; Liu, Y.; Zhang, N.; Li, X.; Tian, S.; Cong, Y. Oxidation and erosion resistance of multi-layer SiC nanowires reinforced SiC coating prepared by CVD on C/C composites in static and aerodynamic oxidation environments. Ceram. Int. 2018, 44, 16227–16236. [Google Scholar] [CrossRef]
- Ak, A.; Karaahmet, O.; Çiçek, B. Effect of ZrB2 and ZrO2 on the erosion/corrosion behavior of glass-ceramic coating. Mater. Today Commun. 2023, 36, 106658. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, L.; Wang, J.; Wang, Z.; Zou, Y.; Qi, D.; Wang, Y.; Guo, Y.; Cheng, S.; Lin, L. Enhanced ablation resistance of ZrC-ZrO2 nanocomposite ceramic coating on TiAlNb medium-entropy alloy prepared by a novel strategy. Ceram. Int. 2023, 49, 37214–37227. [Google Scholar] [CrossRef]
- Zhang, K.; Li, M.; Wei, K.; Feng, P. Research progress on preparation technology and mechanism of erosion-wear resistant coatings. Welding 2022, 1, 9–16. [Google Scholar] [CrossRef]

























| Types of Coatings | Representative Material | Oxygen Barrier Phase |
|---|---|---|
| Aluminide-Based Composite Coatings | TiAl, Ni3Al, (Ni,Pt)Al | Al2O3 |
| Silicide-Based Composite Coatings | MoSi2, NbSi2, TaSi2 | SiO2 |
| MCrAlY-Based Composite Coatings | NiCrAlY, NiCoCrAlY | Al2O3 |
| Boride-Based Composite Coatings | ZrB2, HfB2, MAB | B2O3, ZrO2, Al2O3 |
| Carbide-Based Composite Coatings | SiC, ZrC, HfC, TaC | SiO2 |
| Nitride-Based Composite Coatings | TiAlN, TiAlSiN, Si3N4 | Al2O3, SiO2 |
| Oxide Ceramic Composite Coatings | Al2O3, ZrO2, HfO2 | Dense oxide layer |
| MAX Phase Composite Coatings | Ti2AlC, Cr2AlC | Al2O3, Cr2O3 |
| Enamel Composite Coatings | silicate glass and multi-phase composite glass | Dense glassy phase |
| Inorganic Paint Composite Coatings | Al, SiC | Al2O3, SiO2 |
| Coating Materials | Temperature/°C | Time/h | Mass Loss/% | Healing Phase |
|---|---|---|---|---|
| HfB2-B4C-SiC/SiC [157] | 800 | 10 | 14.8 | B-rich glass |
| 1200 | 104 | 5.45 | B-O-Si glass | |
| MoSi2-Mullite/SiC [158] | 1500 | 80 | −2.60 | Al-Si-O glass |
| TiB2-SiC-Si/SiC-Si [153] | 1300 | 300 | −0.03 | B-O-Si glass |
| SiC/ZrB2-SiC-Y2O3 [159] | 1450 | 10 | 1.39 | B-O-Si glass |
| ZrB2-SiC-Y2O3 [67] | 1450 | 10 | 5.77 | ZrSiO4-SiO2 glass |
| ZrO2/ZrSiO4-glass [126] | 1300 | 650 | 0.60 | ZrSiO4-SiO2 glass |
| ZrB2-MoSi2 [42] | 1750 | 20 | −15.09 | SiO2 glass |
| Technology | Characteristic | Coating Quality | Disadvantages |
|---|---|---|---|
| APS | High coating quality Suitable for complex shapes | High bonding strength Excellent coating uniformity | Complex equipment Complex parameters |
| Cold spraying | Small thermal impact Simple equipment | Dense | Low bonding strength Relatively high porosity |
| Laser cladding | Adjustable thickness | High bonding strength | High cost |
| Magnetron sputtering | Controllable components and thickness | High density High bonding strength High purity | Complex equipment Slow deposition rate |
| PEO | High efficiency Simple operation | High bonding strength | Metal substrates only More pores |
| Embedding method | Simple operation Flexible design | Excellent substrate coverage | Low bonding strength Poor durability |
| Slurry method | Low cost Simple operation | High coverage | Low efficiency Low bonding strength |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, Y.-L.; Wang, S.-Q.; Zou, Y.-C.; Wen, L.; Huang, L.; Chen, G.-L.; Zhu, J.-Q.; Ye, Z.-Y.; Xie, E.-Y.; Zhao, Q.-Y.; et al. High-Temperature Oxidation-Resistant Composite Coatings for Extreme Environments: Material Systems, Design Strategies, Preparation Technologies, Performance Characterizations, and Research Challenges. J. Compos. Sci. 2026, 10, 51. https://doi.org/10.3390/jcs10010051
Yang Y-L, Wang S-Q, Zou Y-C, Wen L, Huang L, Chen G-L, Zhu J-Q, Ye Z-Y, Xie E-Y, Zhao Q-Y, et al. High-Temperature Oxidation-Resistant Composite Coatings for Extreme Environments: Material Systems, Design Strategies, Preparation Technologies, Performance Characterizations, and Research Challenges. Journal of Composites Science. 2026; 10(1):51. https://doi.org/10.3390/jcs10010051
Chicago/Turabian StyleYang, Yan-Long, Shu-Qi Wang, Yong-Chun Zou, Lei Wen, Lei Huang, Guo-Liang Chen, Jia-Qi Zhu, Zhi-Yun Ye, En-Yu Xie, Qing-Yuan Zhao, and et al. 2026. "High-Temperature Oxidation-Resistant Composite Coatings for Extreme Environments: Material Systems, Design Strategies, Preparation Technologies, Performance Characterizations, and Research Challenges" Journal of Composites Science 10, no. 1: 51. https://doi.org/10.3390/jcs10010051
APA StyleYang, Y.-L., Wang, S.-Q., Zou, Y.-C., Wen, L., Huang, L., Chen, G.-L., Zhu, J.-Q., Ye, Z.-Y., Xie, E.-Y., Zhao, Q.-Y., Wang, Y.-M., Ouyang, J.-H., & Zhou, Y. (2026). High-Temperature Oxidation-Resistant Composite Coatings for Extreme Environments: Material Systems, Design Strategies, Preparation Technologies, Performance Characterizations, and Research Challenges. Journal of Composites Science, 10(1), 51. https://doi.org/10.3390/jcs10010051

