Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning
Abstract
:1. Introduction
2. Experiments and Results
2.1. Tube Material Characterization
2.2. Tube Hydroforming Procedure
3. FEM Modelling of Tube Hydroforming
3.1. Modelling Method
3.2. Constitutive Modelling
3.3. Numerical Implementation and Verification
4. FEM-ML Model Formulation
4.1. Conceptional and Methodological Basis
4.2. Development of the Framework
4.2.1. Scheme 1
4.2.2. Scheme 2
4.3. ML Method and Training Strategy
4.4. Validation of the Model
5. Discussion
6. Conclusions
- (1)
- The titanium tube was characterized by a fine and equiaxed grain structure as well as a typical rolling texture. The CPB06 constitutive model, together with a simplified KT hardening model, were applied to capture the distinctive yielding behavior of titanium during multiaxial loading. Accordingly, an FEM model for the hydroforming process was developed, which can accurately predict the evolution of the multi-physical fields.
- (2)
- Based on the fact that there was a one-to-one collocation between the boundary conditions and the instantaneous displacement field during hydroforming, numerous FEM simulations were performed with various loading conditions to generate a database for ML training. The database consisted of the two displacement boundaries, the time series coordinates of all nodes, as well as their number. All the other field variables were derived from the variation of the coordinates, including the principal strain, effective strain, wall thickness, effective stress, etc.
- (3)
- A random forest algorithm was utilized to map the collocation from the displacement boundaries to the concurrent displacement field. To achieve better performance, the involved hyperparameters were tuned and optimized using the grid search method. For both the training dataset and testing dataset, the well-trained model exhibited a good performance with an MAE less than 0.02 and R2 value up to 0.999. In addition to the accuracy, the response time of the model was less than 0.004 s.
- (4)
- The developed model enabled the real-time, full-field simulation of the hydroforming process and the instant prediction of forming states. Specifically, while the effective strain was notably underestimated, the model showed outstanding accuracy and instantaneity in predicting the displacement field, effective stress, and wall thickness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alaswad, A.; Benyounis, K.Y.; Olabi, A.G. Tube hydroforming process: A reference guide. Mater. Des. 2012, 33, 328–339. [Google Scholar] [CrossRef]
- Hartl, C. Mechanics of hydroforming. In Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques; Silberschmidt, V.V., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–109. [Google Scholar]
- Reddy, P.V.; Reddy, B.V.; Ramulu, P.J. Evolution of hydroforming technologies and its applications—A review. J. Adv. Manuf. Syst. 2020, 19, 737–780. [Google Scholar] [CrossRef]
- Johnson, K.I.; Nguyen, B.N.; Davies, R.W.; Grant, G.J.; Khaleel, M.A. A numerical process control method for circular-tube hydroforming prediction. Int. J. Plast. 2004, 20, 1111–1137. [Google Scholar] [CrossRef]
- Bell, C.; Corney, J.; Zuelli, N.; Savings, D. A state of the art review of hydroforming technology. Int. J. Mater. Form. 2020, 13, 789–828. [Google Scholar] [CrossRef]
- He, Z.B.; Zhang, K.; Zhu, H.H.; Lin, Y.L.; Fu, M.W.; Yuan, S.J. An anisotropic constitutive model for forming of aluminum tubes under both biaxial tension and pure shear stress states. Int. J. Plast. 2022, 152, 103259. [Google Scholar] [CrossRef]
- Tiji, S.A.N.; Park, T.; Asgharzadeh, A.; Kim, H.; Athale, M.; Kim, J.H.; Pourboghrat, F. Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method. Int. J. Plast. 2020, 133, 102838. [Google Scholar] [CrossRef]
- Ortjohann, L.; Becker, M.; Niemietz, P.; Bergs, T. Monitoring of fluctuating material properties for optimizing sheet-metal forming processes: A systematic literature review. Mater. Res. Proc. 2023, 28, 2071–2080. [Google Scholar]
- Pham, Q.T.; Le, H.S.; Nguyen, A.T.; Xiao, X.; Kim, Y.S.; Nguyen, V.D.; Tran, H.S.; Tran, X.V. A machine learning–based methodology for identification of the plastic flow in aluminum sheets during incremental sheet forming processes. Int. J. Adv. Manuf. Techol. 2022, 120, 3559–3584. [Google Scholar] [CrossRef]
- Reddy, J.N. Introduction to the Finite Element Method; McGraw-Hill Education: New York, NY, USA, 2019. [Google Scholar]
- Dunne, F.; Petrinic, N. Introduction to Computational Plasticity; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Morgan, D.; Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 2020, 50, 71–103. [Google Scholar] [CrossRef]
- Brodnik, N.R.; Muir, C.; Tulshibagwale, N.; Rossin, J.; Echlin, M.P.; Hamel, C.M.; Kramer, S.L.B.; Pollock, T.M.; Kiser, J.D.; Smith, C.; et al. Perspective: Machine learning in experimental solid mechanics. J. Mech. Phys. Solids 2023, 173, 105231. [Google Scholar] [CrossRef]
- Settgast, C.; Hütter, G.; Kuna, M.; Abendroth, M. A hybrid approach to simulate the homogenized irreversible elastic–plastic deformations and damage of foams by neural networks. Int. J. Plast. 2020, 126, 102624. [Google Scholar] [CrossRef]
- Nascimento, A.; Roongta, S.; Diehl, M.; Beyerlein, I.J. A machine learning model to predict yield surfaces from crystal plasticity simulations. Int. J. Plast. 2023, 161, 103507. [Google Scholar] [CrossRef]
- Jang, D.P.; Fazily, P.; Yoon, J.W. Machine learning-based constitutive model for J2-plasticity. Int. J. Plast. 2021, 138, 102919. [Google Scholar] [CrossRef]
- Neubürger, F.; Arens, J.; Vollmer, M.; Kopinski, T.; Hermes, M. Coupled finite-element-method-simulations for real-time-process monitoring in metal forming digital-twins. In Proceedings of the 10th International Conference on Control, Mechatronics and Automation (ICCMA), Esch-sur-Alzette, Luxembourg, 9–12 November 2022. [Google Scholar]
- Ye, Z.N.; Hsu, S.C.; Wei, H.H. Real-time prediction of structural fire responses: A finite element-based machine-learning approach. Autom. Constr. 2022, 136, 104165. [Google Scholar] [CrossRef]
- Ye, Z.N.; Hsu, S.C. Predicting real-time deformation of structure in fire using machine learning with CFD and FEM. Autom. Constr. 2022, 143, 104574. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, X.M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 2011, 32, 1733–1759. [Google Scholar] [CrossRef]
- Cheng, L.; Chang, H.; Tang, B.; Kou, H.C.; Li, J.S. Flow stress prediction of high-Nb TiAl alloys under high temperature deformation. Adv. Mater. Res. 2012, 510, 723–728. [Google Scholar] [CrossRef]
- Han, Y.; Zeng, W.; Zhao, Y.; Zhang, X.; Sun, Y.; Ma, X. Modeling of constitutive relationship of Ti–25V–15Cr–0.2 Si alloy during hot deformation process by fuzzy-neural network. Mater. Des. 2010, 31, 4380–4385. [Google Scholar] [CrossRef]
- Jordan, B.; Gorji, M.B.; Mohr, D. Neural network model describing the temperature-and rate-dependent stress-strain response of polypropylene. Int. J. Plast. 2020, 135, 102811. [Google Scholar] [CrossRef]
- Li, X.; Roth, C.C.; Mohr, D. Machine-learning based temperature- and rate-dependent plasticity model: Application to analysis of fracture experiments on DP steel. Int. J. Plast. 2019, 118, 320–344. [Google Scholar] [CrossRef]
- Mozaffar, M.; Bostanabad, R.; Chen, W.; Ehmann, K.; Cao, J.; Bessa, M. Deep learning predicts path-dependent plasticity. Proc. Nat. Acad. Sci. USA 2019, 116, 26414–26420. [Google Scholar] [CrossRef] [PubMed]
- Abueidda, D.W.; Koric, S.; Sobh, N.A.; Sehitoglu, H. Deep learning for plasticity and thermo-viscoplasticity. Int. J. Plast. 2021, 136, 102852. [Google Scholar] [CrossRef]
- Patriarca, L.; Beretta, S.; Foletti, S.; Riva, A.; Parodi, S. A probabilistic framework to define the design stress and acceptable defects under combined-cycle fatigue conditions. Eng. Fract. Mech. 2020, 224, 106784. [Google Scholar] [CrossRef]
- Gorji, M.B.; Mozaffar, M.; Heidenreich, J.N.; Cao, J.; Mohr, D. On the potential of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys. Solids 2020, 143, 103972. [Google Scholar] [CrossRef]
- Ling, C.; Li, D.F.; Busso, E.P. Porous single crystals under triaxial creep loadings: A data-driven modelling approach. Int. J. Plast. 2023, 169, 103735. [Google Scholar] [CrossRef]
- Qu, T.; Di, S.; Feng, Y.T.; Wang, M.; Zhao, T. Towards data-driven constitutive modelling for granular materials via micromechanics-informed deep learning. Int. J. Plast. 2021, 144, 103046. [Google Scholar] [CrossRef]
- Zhang, A.; Mohr, D. Using neural networks to represent von Mises plasticity with isotropic hardening. Int. J. Plast. 2020, 132, 102732. [Google Scholar] [CrossRef]
- Fazily, P.; Yoon, J.W. Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming. Int. J. Plast. 2023, 166, 103642. [Google Scholar] [CrossRef]
- Sun, X.; Li, H.; Zhan, M.; Zhou, J.; Zhang, J.; Gao, J. Cross-scale prediction from RVE to component. Int. J. Plast. 2021, 140, 102973. [Google Scholar] [CrossRef]
- Xu, R.; Yang, J.; Yan, W.; Huang, Q.; Giunta, G.; Belouettar, S.; Zahrouni, H.; Zineb, T.B.; Hu, H. Data-driven multiscale finite element method: From concurrence to separation. Comput. Methods Appl. Mech. Eng. 2020, 363, 112893. [Google Scholar] [CrossRef]
- Mangal, A.; Holm, E.A. Applied machine learning to predict stress hotspots I: Face centered cubic materials. Int. J. Plast. 2018, 111, 122–134. [Google Scholar] [CrossRef]
- Lu, L.; Dao, M.; Kumar, P.; Ramamurty, U.; Karniadakis, G.E.; Suresh, S. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl. Acad. Sci. USA 2020, 117, 7052–7062. [Google Scholar] [CrossRef] [PubMed]
- Puchi-Cabrera, E.S.; Rossi, E.; Sansonetti, G.; Sebastiani, M.; Bemporad, E. Machine learning aided nanoindentation: A review of the current state and future perspectives. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101091. [Google Scholar] [CrossRef]
- Beausir, B.; Fundenberger, J.-J. Analysis Tools for Electron and X-ray Diffraction, ATEX-Software. Université de Lorraine-Metz. 2017. Available online: www.atex-software.eu (accessed on 18 January 2024).
- Suwas, S.; Ray, R.K. Crystallographic Texture of Materials; Springer: London, UK, 2014. [Google Scholar]
- Hama, T.; Hirano, K.; Matsuura, R. Cylindrical cup drawing of a commercially pure titanium sheet: Experiment and crystal plasticity finite-element simulation. Int. J. Mater. Form. 2022, 15, 8. [Google Scholar] [CrossRef]
- Zhai, J.; Luo, T.; Gao, X.; Graham, S.M.; Baral, M.; Korkolis, Y.P.; Knudsen, E. Modeling the ductile damage process in commercially pure titanium. Int. J. Solids Struct. 2016, 91, 26–45. [Google Scholar] [CrossRef]
- Kim, J.; Pham, Q.T.; Ha, J.; Kim, Y.S. Constitutive modeling of commercial pure titanium sheet based on non-associated flow rule and differential hardening. Int. J. Mech. Sci. 2022, 230, 107549. [Google Scholar] [CrossRef]
- Pham, Q.T.; Lee, M.G.; Kim, Y.S. Characterization of the isotropic-distortional hardening model and its application to commercially pure titanium sheets. Int. J. Mech. Sci. 2019, 160, 90–102. [Google Scholar] [CrossRef]
- Baral, M.; Hama, T.; Knudsen, E.; Korkolis, Y.P. Plastic deformation of commercially-pure titanium: Experiments and modeling. Int. J. Plast. 2018, 105, 164–194. [Google Scholar] [CrossRef]
- Baral, M. Experimental Investigation of Plastic Anisotropy of Commercially-Pure Titanium. Doctoral Dissertation, University of New Hampshire, Durham, NH, USA, 2015. [Google Scholar]
- Winer, W.O. Molybdenum disulfide as a lubricant: A review of the fundamental knowledge. Wear 1967, 10, 422–452. [Google Scholar] [CrossRef]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- Vogel, J.H.; Lee, D. An automated two-view method for determining strain distributions on deformed surfaces. J. Mater. Shap. Techol. 1988, 6, 205–216. [Google Scholar] [CrossRef]
- Elsheikh, A.H. Applications of machine learning in friction stir welding: Prediction of joint properties, real-time control and tool failure diagnosis. Eng. Appl. Artif. Intell. 2023, 121, 105961. [Google Scholar] [CrossRef]
- Roy, M.H.; Larocque, D. Robustness of random forests for regression. J. Nonparameter Stat. 2012, 24, 993–1006. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
Element | Ti | Fe | C | N | H | O |
wt. % | Bal. | <0.30 | <0.1 | <0.05 | <0.015 | <0.25 |
No. | Target Internal Pressure (MPa) | Pressurization Slope (MPa/s) | Axial Feeding Rate (mm/s) | Counterpressure (MPa) |
---|---|---|---|---|
1 | 36 | 3.6 | 1.5 | 0.2 |
2 | 58 | 3.2 | 1.5 | 0.2 |
3 | 70 | 7.0 | 1.5 | 0.2 |
Parameter | Search Space | Optimal Value |
---|---|---|
ntree | [50 130 300 700 1000] | 130 |
dmax | [3 5 10 None] | None |
nfeature | [log2 sqrt auto] | auto |
nnode | [1 2 5 7] | 2 |
nleaf | [1 2 5 7] | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Guo, H.; Sun, L.; Yang, C.; Sun, F.; Li, J. Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning. J. Manuf. Mater. Process. 2024, 8, 175. https://doi.org/10.3390/jmmp8040175
Cheng L, Guo H, Sun L, Yang C, Sun F, Li J. Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning. Journal of Manufacturing and Materials Processing. 2024; 8(4):175. https://doi.org/10.3390/jmmp8040175
Chicago/Turabian StyleCheng, Liang, Haijing Guo, Lingyan Sun, Chao Yang, Feng Sun, and Jinshan Li. 2024. "Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning" Journal of Manufacturing and Materials Processing 8, no. 4: 175. https://doi.org/10.3390/jmmp8040175
APA StyleCheng, L., Guo, H., Sun, L., Yang, C., Sun, F., & Li, J. (2024). Real-Time Simulation of Tube Hydroforming by Integrating Finite-Element Method and Machine Learning. Journal of Manufacturing and Materials Processing, 8(4), 175. https://doi.org/10.3390/jmmp8040175