Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies
Abstract
:1. Introduction
2. Biomaterials for Biological Tissue Replacements
2.1. Metals
2.2. Ceramics
2.3. Polymers
3. AM Techniques for Metallic Biomaterials
3.1. Direct Energy Deposition Technique (DED)
3.2. Material Extrusion (ME)
3.3. Powder Bed Fusion (PBF)
3.4. Vat Polymerization (VP)
3.5. Binder Jetting (BJ)
3.6. Material Jetting (MJ)
3.7. Sheet Lamination (SL)
4. Types of Metal Implants
4.1. Stainless Steel (SS)
4.2. Cobalt-Based Alloys
4.3. Titanium and Its Alloys
4.4. Tantalum and Its Alloys
4.5. Niobium and Zirconium Alloy
4.6. Mg Alloys
4.7. Other Metals and Their Alloys
5. Outlook of Titanium and Its Alloys
5.1. AM Application in Orthopedics
5.2. Titanium Alloy in Medical Implants
5.3. Biocompatibility of Titanium and Its alloy
5.4. Use of Titanium and Its Alloy as Lower-Limb Prostheses
5.5. Structural Defects in AM Implants
5.6. Topology Optimization (TO) of Implants
6. Discussion
- The mainly used AM technology in the manufacture of metal implants is DED [119] and PBF [310]. However, laser PBF, which is also called SLM, is widely used for making Ti and other metal alloys for implants, because this process provides an advantage of manufacturing complex structures with a customized design [311].
- AM is recently used for a number of biomedical applications, such as printing of biodegradable tissue and planning of surgical operations, but most importantly, it is used more in the development of orthopedic implants [312].
- Most of the studies say that titanium possesses greater mechanical properties and stiffness compared with natural bone, which may result in the failure of an implant [313]. Hence, alloying is necessarily important. Even though titanium is more expensive than other metals and it has poor wear resistance, it is mainly used as a metal implant because it adapts well to the human body when it is implanted [314].
- Some surface modifications are needed for Ti and its alloys in order to achieve better bonding with the human body. Surface chemistry, surface potential, surface roughness, surface conductivity, and surface energy are the needed modifications. These modifications cause protein adhesion and biofilm formation on the implants, which will lead to the change in biocompatibility and then lead to the ultimate success of the implant [315,316].
7. Conclusions
- According to the general agreement on the results, AM is a successful method used in orthopedics mainly for the replication of bones. AM improves patient outcome and creates reproducible models with reduced operating time. Even though ME, PBF, VP, BJ, MJ, and SL each have their own advantages, from the authors’ perspective, DED is the most efficiently used AM technique for making metallic implants. DED has the ability to control the grain structure, so the process is highly recommended for the repair of high-quality functional parts. The laser and electron beam can be controlled very precisely. The DED process also allows for the creation of components with composition gradients or hybrid structures using multiple materials with differing compositions.
- Ti and its alloys are suitable for making HIs using the AM process. Their biocompatibility and biological inertness are appreciable. However, notch sensitivity and poor wear resistance, when compared with other metals, make Ti and its alloys remain hurdles in a successful implant osseointegration.
- According to the major observations of the researchers, the reverse engineering process helps in the design and optimization of implants with better mechanical properties.
- This review reveals that increasing the porosity inside the HI results in the reduction of strength and ductility, and therefore, failures are likely to initiate at the largest pores. Such defects can be overcome by using an optimization method, such as TO, for the design of HIs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jon Goldberg, A.; Kuhn, L.T. Biomaterials. In Regenerative Engineering; CRC Press: Boca Raton, FL, USA, 2013; ISBN 9781482216837. [Google Scholar]
- O’Brien, F.J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Nair, L.S.; Laurencin, C.T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A.; Frederick, W.J.; Hallett, J.P.; Leak, D.J.; Liotta, C.L.; et al. The Path Forward for Biofuels and Biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [Green Version]
- Vert, M.; Doi, Y.; Hellwich, K.H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Hench, L.L. Biomaterials: A Forecast for the Future. Biomaterials 1998, 19, 1419–1423. [Google Scholar] [CrossRef]
- Hastings, G.W. Bio-Materials Science and Technology. Biomater. Med. Devices Artif. Organs 1979, 7, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; de Groot, K. Calcium Phosphate Biomaterials: An Overview. In Learning from Nature How to Design New Implantable Biomaterialsis: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes; Springer: Dordrecht, The Netherlands, 2004; pp. 37–57. [Google Scholar]
- Lin, K.; Xia, L.; Li, H.; Jiang, X.; Pan, H.; Xu, Y.; Lu, W.W.; Zhang, Z.; Chang, J. Enhanced Osteoporotic Bone Regeneration by Strontium-Substituted Calcium Silicate Bioactive Ceramics. Biomaterials 2013, 34, 10028–10042. [Google Scholar] [CrossRef] [PubMed]
- Kashirina, A.; Yao, Y.; Liu, Y.; Leng, J. Biopolymers as Bone Substitutes: A Review. Biomater. Sci. 2019, 7, 3961–3983. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Bioceramics of Calcium Orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef]
- Jones, F.H. Teeth and Bones: Applications of Surface Science to Dental Materials and Related Biomaterials. Surf. Sci. Rep. 2001, 42, 75–205. [Google Scholar] [CrossRef]
- Zeng, R.; Dietzel, W.; Witte, F.; Hort, N.; Blawert, C. Progress and Challenge for Magnesium Alloys as Biomaterials. Adv. Eng. Mater. 2008, 10, B3–B14. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y.M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review; Elsevier Ltd.: Amsterdam, The Netherlands, 2016; Volume 83, pp. 127–141. [Google Scholar]
- Hänzi, A.C.; Gerber, I.; Schinhammer, M.; Löffler, J.F.; Uggowitzer, P.J. On the in Vitro and in Vivo Degradation Performance and Biological Response of New Biodegradable Mg-Y-Zn Alloys. Acta Biomater. 2010, 6, 1824–1833. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dizon, J.R.C.; Espera, A.H.; Chen, Q.; Advincula, R.C. Mechanical Characterization of 3D-Printed Polymers. Addit. Manuf. 2018, 20, 44–67. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Javaid, M.; Haleem, A. Additive Manufacturing Applications in Medical Cases: A Literature Based Review. Alex. J. Med. 2018, 54, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Jyothish Kumar, L.; Pandey, P.M.; Wimpenny, D.I. 3D Printing and Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9789811303050. [Google Scholar]
- Li, C.; Liu, Z.Y.; Fang, X.Y.; Guo, Y.B. Residual Stress in Metal Additive Manufacturing. Procedia Cirp. 2018, 71, 348–353. [Google Scholar] [CrossRef]
- Culmone, C.; Smit, G.; Breedveld, P. Additive Manufacturing of Medical Instruments: A State-of-the-Art Review. Addit. Manuf. 2019, 27, 461–473. [Google Scholar] [CrossRef]
- Salmi, M.; Paloheimo, K.S.; Tuomi, J.; Wolff, J.; Mäkitie, A. Accuracy of Medical Models Made by Additive Manufacturing (Rapid Manufacturing). J. Cranio-Maxillofac. Surg. 2013, 41, 603–609. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Malda, J. Additive Manufacturing of Biomaterials, Tissues, and Organs. Ann. Biomed. Eng. 2017, 45, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Geetha, M.; Singh, A.K.; Asokamani, R.; Gogia, A.K. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review; Elsevier Ltd.: Amsterdam, The Netherlands, 2009; Volume 54, pp. 397–425. [Google Scholar]
- Ekdahl, K.N.; Lambris, J.D.; Elwing, H.; Ricklin, D.; Nilsson, P.H.; Teramura, Y.; Nicholls, I.A.; Nilsson, B. Innate Immunity Activation on Biomaterial Surfaces: A Mechanistic Model and Coping Strategies. Adv. Drug Deliv. Rev. 2011, 63, 1042–1050. [Google Scholar] [CrossRef] [Green Version]
- Davies, J.E. Bone Bonding at Natural and Biomaterial Surfaces. Biomaterials 2007, 28, 5058–5067. [Google Scholar] [CrossRef]
- Patel, N.; Gohil, P. A Review on Biomaterials: Scope, Applications & Human Anatomy Significance. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 91–101. [Google Scholar]
- Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Development of Biomaterial Scaffold for Nerve Tissue Engineering: Biomaterial Mediated Neural Regeneration. J. Biomed. Sci. 2009, 16, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Bellamkonda, R.V. Biomaterials for the Central Nervous System. J. R. Soc. Interface 2008, 5, 957–975. [Google Scholar] [CrossRef] [PubMed]
- Drury, J.L.; Mooney, D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337–4351. [Google Scholar] [CrossRef]
- Webber, M.J.; Appel, E.A.; Meijer, E.W.; Langer, R. Supramolecular Biomaterials. Nat. Mater. 2016, 15, 13–26. [Google Scholar] [CrossRef]
- Huebsch, N.; Mooney, D.J. Inspiration and Application in the Evolution of Biomaterials. Nature 2009, 462, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Staiger, M.P.; Pietak, A.M.; Huadmai, J.; Dias, G. Magnesium and Its Alloys as Orthopedic Biomaterials: A Review. Biomaterials 2006, 27, 1728–1734. [Google Scholar] [CrossRef]
- Matsushita, T.; Takahashi, H. Orthopedic Applications of Metallic Biomaterials. In Metals for Biomedical Devices; Woodhead Publishing: Cambridge, UK, 2019; ISBN 9780081026663. [Google Scholar]
- Jin, W.; Chu, P.K. Orthopedic Implants. In Encyclopedia of Biomedical Engineering; Elsevier, 2019; Available online: http://www.cityu.edu.hk/phy/appkchu/Publications/2017/17.108.pdf (accessed on 1 November 2022).
- Ebramzadeh, E.; Chiesa, R.; Sangiorgio, S.N.; Longjohn, D.B. Orthopedic Biomaterials. In Successful Techniques for Total Hip Replacement; Future Medicine Ltd.: London, UK, 2014; ISBN 9781780844718. [Google Scholar]
- Mansfield, B.; Torres, S.; Yu, T.; Wu, D. A Review on Additive Manufacturing of Ceramics. In Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers 2019, Erie, PA, USA, 10–14 June 2019; pp. 609–614. [Google Scholar] [CrossRef]
- Tsakiris, V.; Tardei, C.; Clicinschi, F.M. Biodegradable Mg Alloys for Orthopedic Implants—A Review. J. Magnes. Alloy. 2021, 9, 1884–1905. [Google Scholar] [CrossRef]
- Novikova, G.E. Introduction to Corrosion of Bioimplants. Prot. Met. Phys. Chem. Surf. 2011, 47, 372–380. [Google Scholar] [CrossRef]
- Kurella, A.; Dahotre, N.B. Review Paper: Surface Modification for Bioimplants: The Role of Laser Surface Engineering. J. Biomater. Appl. 2005, 20, 5–50. [Google Scholar] [CrossRef]
- Kang, C.W.; Fang, F.Z. State of the Art of Bioimplants Manufacturing: Part I. Adv. Manuf. 2018, 6, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Lazzi, G. Thermal Effects of Bioimplants. IEEE Eng. Med. Biol. Mag. 2005, 24, 75–81. [Google Scholar] [CrossRef]
- Ho, C.M.B.; Ng, S.H.; Yoon, Y.J. A Review on 3D Printed Bioimplants. Int. J. Precis. Eng. Manuf. 2015, 16, 1035–1046. [Google Scholar] [CrossRef]
- Attar, H.; Calin, M.; Zhang, L.C.; Scudino, S.; Eckert, J. Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium. Mater. Sci. Eng. A 2014, 593, 170–177. [Google Scholar] [CrossRef]
- Prakasam, M.; Locs, J.; Salma-Ancane, K.; Loca, D.; Largeteau, A.; Berzina-Cimdina, L. Biodegradable Materials and Metallic Implants-A Review. J. Funct. Biomater. 2017, 8, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minagar, S.; Berndt, C.C.; Wang, J.; Ivanova, E.; Wen, C. A Review of the Application of Anodization for the Fabrication of Nanotubes on Metal Implant Surfaces. Acta Biomater. 2012, 8, 2875–2888. [Google Scholar] [CrossRef]
- Rohman, G. Materials Used in Biomaterial Applications. In Biomaterials; Wiley Online Library John Wiley & Sons, Inc., 2014; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119043553.ch3 (accessed on 1 November 2022).
- Jayaraj, K.; Pius, A. Biocompatible Coatings for Metallic Biomaterials. In Fundamental Biomaterials: Metals; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Dewidar, M.M.; Yoon, H.C.; Lim, J.K. Mechanical Properties of Metals for Biomedical Applications Using Powder Metallurgy Process: A Review. Met. Mater. Int. 2006, 12, 193–206. [Google Scholar] [CrossRef]
- Das, D.; Zhang, Z.; Winkler, T.; Mour, M.; Gunter, C.; Morlock, M.; Machens, H.G.; Schilling, A.F. Bioresorption and Degradation of Biomaterials. Adv. Biochem. Eng. Biotechnol. 2012, 126, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Arango, S.; Peláez-Vargas, A.; García, C. Coating and Surface Treatments on Orthodontic Metallic Materials. Coatings 2013, 3, 1–15. [Google Scholar] [CrossRef]
- Li, R.W.K.; Chow, T.W.; Matinlinna, J.P. Ceramic Dental Biomaterials and CAD/CAM Technology: State of the Art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Pina, S.; Reis, R.L.; Oliveira, J.M. Ceramic Biomaterials for Tissue Engineering. In Fundamental Biomaterials: Ceramics; Elsevier, 2018; Available online: https://hdl.handle.net/1822/51774 (accessed on 1 November 2022).
- Habibovic, P.; Yuan, H.; Van Der Valk, C.M.; Meijer, G.; Van Blitterswijk, C.A.; De Groot, K. 3D Microenvironment as Essential Element for Osteoinduction by Biomaterials. Biomaterials 2005, 26, 3565–3575. [Google Scholar] [CrossRef]
- Kamitakahara, M.; Ohtsuki, C.; Miyazaki, T. Review Paper: Behavior of Ceramic Biomaterials Derived from Tricalcium Phosphate in Physiological Condition. J. Biomater. Appl. 2008, 23, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Biomaterials. Prog. Mater. Sci. 2018, 93, 45–111. [Google Scholar] [CrossRef] [PubMed]
- Frazar, E.M.; Shah, R.A.; Dziubla, T.D.; Hilt, J.Z. Multifunctional Temperature-Responsive Polymers as Advanced Biomaterials and Beyond. J. Appl. Polym. Sci. 2020, 137, 48770. [Google Scholar] [CrossRef] [Green Version]
- Backes, E.H.; Pires, L.D.N.; Beatrice, C.A.G.; Costa, L.C.; Passador, F.R.; Pessan, L.A. Fabrication of Biocompatible Composites of Poly(Lactic Acid)/Hydroxyapatite Envisioning Medical Applications. Polym. Eng. Sci. 2020, 60, 636–644. [Google Scholar] [CrossRef]
- Demina, T.S.; Frolova, A.; Istomin, A.V.; Kotova, S.L.; Piskarev, M.S.; Bardakova, K.N.; Yablokov, M.Y.; Altynov, V.A.; Kravets, L.I.; Gilman, A.B.; et al. Coating of Polylactide Films by Chitosan: Comparison of Methods. J. Appl. Polym. Sci. 2020, 13, 48287. [Google Scholar] [CrossRef]
- Dellaquila, A.; Greco, G.; Campodoni, E.; Mazzocchi, M.; Mazzolai, B.; Tampieri, A.; Pugno, N.M.; Sandri, M. Optimized Production of a High-Performance Hybrid Biomaterial: Biomineralized Spider Silk for Bone Tissue Engineering. J. Appl. Polym. Sci. 2020, 137, 48739. [Google Scholar] [CrossRef]
- Calleros, E.L.; Simonovsky, F.I.; Garty, S.; Ratner, B.D. Crosslinked, Biodegradable Polyurethanes for Precision-Porous Biomaterials: Synthesis and Properties. J. Appl. Polym. Sci. 2020, 137, 48943. [Google Scholar] [CrossRef]
- Newswire, P.R. Dental Bone Graft Substitutes and Other Biomaterials Market (Natural, Ceramic, Composite and Polymer)—Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2014–2020. NY-Reportlinker. 2014. Available online: http://www.Prnewswire.com (accessed on 12 March 2022).
- Devi, P.R.S. Biomaterial and Its Medical. Int. J. Adv. Res. Innov. Ideas Educ. 2017, 3, 489–498. [Google Scholar]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D Biomaterial Scaffolds and Osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Jones, L.C.; Timmie Topoleski, L.D.; Tsao, A.K. Biomaterials in Orthopaedic Implants; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; ISBN 9780081002865. [Google Scholar]
- Gallo, J.; Gibon, E.; Goodman, S.B. Implants for Joint Replacement of the Hip and Knee. In Materials and Devices for Bone Disorders; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Evans, E.M.; Freeman, M.A.R.; Miller, A.J.; Vernon Roberts, B. Metal Sensitivity as a Cause of Bone Necrosis and Loosening of the Prosthesis in Total Joint Replacement. J. Bone Jt. Surg.—Ser. B 1974, 56-B, 626–642. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sanghavi, S.; Sancheti, P. Metallic Biomaterial for Bone Support and Replacement. In Fundamental Biomaterials: Metals; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Shayesteh Moghaddam, N.; Taheri Andani, M.; Amerinatanzi, A.; Haberland, C.; Huff, S.; Miller, M.; Elahinia, M.; Dean, D. Metals for Bone Implants: Safety, Design, and Efficacy. Biomanuf. Rev. 2016, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Simske, S.J.; Ayers, R.A.; Bateman, T.A. Porous Materials for Bone Engineering. Mater. Sci. Forum 1997, 250, 151–182. [Google Scholar] [CrossRef]
- Manakari, V.; Parande, G.; Gupta, M. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review. Metals 2017, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Bansiddhi, A.; Sargeant, T.D.; Stupp, S.I.; Dunand, D.C. Porous NiTi for Bone Implants: A Review. Acta Biomater. 2008, 4, 773–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katti, K.S. Biomaterials in Total Joint Replacement. Colloids Surf. B Biointerfaces 2004, 39, 133–142. [Google Scholar] [CrossRef]
- Ryan, G.; Pandit, A.; Apatsidis, D.P. Fabrication Methods of Porous Metals for Use in Orthopaedic Applications. Biomaterials 2006, 27, 2651–2670. [Google Scholar] [CrossRef] [PubMed]
- Bommala, V.K.; Krishna, M.G.; Rao, C.T. Magnesium Matrix Composites for Biomedical Applications: A Review. J. Magnes. Alloy. 2019, 7, 72–79. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Additive Manufacturing Applications in Orthopaedics: A Review. J. Clin. Orthop. Trauma 2018, 9, 202–206. [Google Scholar] [CrossRef]
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its Prevention-a Review. Recent Pat. Corros. Sci. 2010, 2, 40–54. [Google Scholar] [CrossRef] [Green Version]
- Mantripragada, V.P.; Lecka-Czernik, B.; Ebraheim, N.A.; Jayasuriya, A.C. An Overview of Recent Advances in Designing Orthopedic and Craniofacial Implants. J. Biomed. Mater. Res.—Part A 2013, 101, 3349–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáenz, A.; Rivera, E.; Brostow, W.; Castaño, V.M. Ceramic Biomaterials: An Introductory Overview. J. Mater. Educ. 1999, 21, 267–276. [Google Scholar]
- Kulkarni, S.V.; Nemade, A.C.; Sonawwanay, P.D. An Overview on Metallic and Ceramic Biomaterials. Recent Adv. Manuf. Process. Syst. 2022, 149–165. [Google Scholar]
- Festas, A.J.; Ramos, A.; Davim, J.P. Medical Devices Biomaterials–A Review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 234, 218–228. [Google Scholar] [CrossRef]
- Andrade, C.T.; Rojas, E.G.A. Biopolymers. In Biopolymer Engineering in Food Processing; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439844953. [Google Scholar]
- Jahnke, A. Could Biopolymers Answer the Single-Use Problem? Reinf. Plast. 2020, 64, 317–319. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I. Production of Poly-Hydroxyalkanoate as Secondary Metabolite with Main Focus on Sustainable Energy. Renew. Sustain. Energy Rev. 2017, 72, 95–104. [Google Scholar] [CrossRef]
- Suzuki, S.; Ikada, Y. Biomaterials for Surgical Operation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; ISBN 1617795704. [Google Scholar]
- Yusuf, S.M.; Cutler, S.; Gao, N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry. Metals 2019, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Sing, S.L.; Yeong, W.Y.; Wiria, F.E.; Tay, B.Y.; Zhao, Z.; Zhao, L.; Tian, Z.; Yang, S. Direct Selective Laser Sintering and Melting of Ceramics: A Review. Rapid Prototyp. J. 2017, 23, 611–623. [Google Scholar] [CrossRef]
- Krishna, B.V.; Xue, W.; Bose, S.; Bandyopadhyay, A. Functionally Graded Co–Cr–Mo Coating on Ti–6Al–4V Alloy Structures. Acta Biomater. 2008, 4, 697–706. [Google Scholar] [CrossRef]
- Feenstra, D.R.; Banerjee, R.; Fraser, H.L.; Huang, A.; Molotnikov, A.; Birbilis, N. Critical Review of the State of the Art in Multi-Material Fabrication via Directed Energy Deposition. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100924. [Google Scholar] [CrossRef]
- Vartanian, K.; Brewer, L.; Manley, K.; Cobbs, T. Powder Bed Fusion vs. Directed Energy Deposition Benchmark Study: Mid-Size Part with Simple Geometry. Optomec Tech. Rep 2016, 1, 1–4. [Google Scholar]
- Del Val, J.; Arias-González, F.; Barro, O.; Riveiro, A.; Comesaña, R.; Penide, J.; Lusquiños, F.; Bountinguiza, M.; Quintero, F.; Pou, J. Functionally Graded 3D Structures Produced by Laser Cladding. Procedia Manuf. 2017, 13, 169–176. [Google Scholar] [CrossRef]
- Huotilainen, E.; Salmi, M.; Chekurov, S.; Flores Ituarte, I. Effect of Build Orientation in 3D Printing Production for Material Extrusion, Material Jetting, Binder Jetting, Sheet Object Lamination, Vat Photopolymerisation, and Powder Bed Fusion. Int. J. Collab. Enterp. 2016, 5, 218. [Google Scholar] [CrossRef]
- Wasti, S.; Adhikari, S. Use of Biomaterials for 3D Printing by Fused Deposition Modeling Technique: A Review. Front. Chem. 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Z.; Alemán, M.E.; Benítez, A.N.; Monzón, M.D. Theoretical–Experimental Evaluation of Different Biomaterials for Parts Obtaining by Fused Deposition Modeling. Measurement 2016, 89, 137–144. [Google Scholar] [CrossRef]
- Li, B.; Webster, T. Orthopedic Biomaterials Progress in Biology, Manufacturing, and Industry Perspectives; Springer: Dordrecht, The Netherlands, 2018; ISBN 9783319895420. [Google Scholar]
- Chueh, Y.-H.; Wei, C.; Zhang, X.; Li, L. Integrated Laser-Based Powder Bed Fusion and Fused Filament Fabrication for Three-Dimensional Printing of Hybrid Metal/Polymer Objects. Addit. Manuf. 2020, 31, 100928. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Mellor, S.; Hao, L.; Zhang, D. Additive Manufacturing: A Framework for Implementation. Int. J. Prod. Econ. 2014, 149, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.D.; Mahender, T.; Reddy, A.R. Powder Bed Fusion Process: A Brief Review. Mater. Today Proc. 2021, 46, 350–355. [Google Scholar] [CrossRef]
- Awad, A.; Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Advances in Powder Bed Fusion 3D Printing in Drug Delivery and Healthcare. Adv. Drug Deliv. Rev. 2021, 174, 406–424. [Google Scholar] [CrossRef] [PubMed]
- Gibson, I.; Rosen, D.; Stucker, B. Powder Bed Fusion Processes. In Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 107–145. [Google Scholar]
- Derimow, N.; Hrabe, N. Oxidation in Reused Powder Bed Fusion Additive Manufacturing Ti-6Al-4V Feedstock: A Brief Review. Jom 2021, 73, 3618–3638. [Google Scholar] [CrossRef]
- Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Romero, C.; Yang, F.; Bolzoni, L. Fatigue and Fracture Properties of Ti Alloys from Powder-Based Processes—A Review. Int. J. Fatigue 2018, 117, 407–419. [Google Scholar] [CrossRef]
- Fotovvati, B.; Asadi, E. Size Effects on Geometrical Accuracy for Additive Manufacturing of Ti-6Al-4V ELI Parts. Int. J. Adv. Manuf. Technol. 2019, 104, 2951–2959. [Google Scholar] [CrossRef]
- Gruber, S.; Grunert, C.; Riede, M.; López, E.; Marquardt, A.; Brueckner, F.; Leyens, C. Comparison of Dimensional Accuracy and Tolerances of Powder Bed Based and Nozzle Based Additive Manufacturing Processes. J. Laser Appl. 2020, 32, 32016. [Google Scholar] [CrossRef]
- Alammar, A.; Kois, J.C.; Revilla-León, M.; Att, W. Additive Manufacturing Technologies: Current Status and Future Perspectives. J. Prosthodont. 2022, 31, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Starosolski, Z.A.; Kan, J.H.; Rosenfeld, S.D.; Krishnamurthy, R.; Annapragada, A. Application of 3-D Printing (Rapid Prototyping) for Creating Physical Models of Pediatric Orthopedic Disorders. Pediatr. Radiol. 2014, 44, 216–221. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y. Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution. J. Manuf. Process. 2012, 14, 107–118. [Google Scholar] [CrossRef]
- Shah, P.; Racasan, R.; Bills, P. Comparison of Different Additive Manufacturing Methods Using Computed Tomography. Case Stud. Nondestruct. Test. Eval. 2016, 6, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties. Mater. Des. 2018, 144, 98–128. [Google Scholar] [CrossRef]
- Shick, T.M.; Abdul Kadir, A.Z.; Ngadiman, N.H.A.; Ma’aram, A. A Review of Biomaterials Scaffold Fabrication in Additive Manufacturing for Tissue Engineering. J. Bioact. Compat. Polym. 2019, 34, 415–435. [Google Scholar] [CrossRef]
- Dini, F.; Ghaffari, S.A.; Jafar, J.; Hamidreza, R.; Marjan, S. A Review of Binder Jet Process Parameters; Powder, Binder, Printing and Sintering Condition. Met. Powder Rep. 2020, 75, 95–100. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Binder Jetting. In Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–252. [Google Scholar]
- Yuan, J.; Chen, C.; Yao, D.; Chen, G. 3D Printing of Oil Paintings Based on Material Jetting and Its Reduction of Staircase Effect. Polymers 2020, 12, 2536. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Klocke, F.; Klink, A.; Veselovac, D.; Aspinwall, D.K.; Soo, S.L.; Schmidt, M.; Schilp, J.; Levy, G.; Kruth, J.-P. Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes. CIRP Ann. 2014, 63, 703–726. [Google Scholar] [CrossRef]
- Salmi, M. Additive Manufacturing Processes in Medical Applications. Materials 2021, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Carou, D.; Rubio, E.M.; Teti, R. Current Advances in Additive Manufacturing. Procedia CIRP 2020, 88, 439–444. [Google Scholar] [CrossRef]
- Katampe, I. Innovative Applications of Polymer Materials for 3D Printing. In Defense Innovation Handbook: Guidelines, Strategies, and Techniques; CRC Press: Boca Raton, FL, USA, 2018; pp. 375–387. [Google Scholar]
- Singer, F.; Deisenroth, D.C.; Hymas, D.M.; Ohadi, M.M. Additively Manufactured Copper Components and Composite Structures for Thermal Management Applications. In Proceedings of the 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 30 May–2 June 2017; pp. 174–183. [Google Scholar]
- Feygin, M.; Hsieh, B. Laminated Object Manufacturing: A Simpler Process. In Proceedings of the 1991 International Solid Freeform Fabrication Symposium, Austin, TX, USA, 12–14 August 1991; pp. 123–130. [Google Scholar]
- Wysocki, B.; Maj, P.; Sitek, R.; Buhagiar, J.; Kurzydłowski, K.J.; Świeszkowski, W. Laser and Electron Beam Additive Manufacturing Methods of Fabricating Titanium Bone Implants. Appl. Sci. 2017, 7, 657. [Google Scholar] [CrossRef]
- Trevisan, F.; Calignano, F.; Aversa, A.; Marchese, G.; Lombardi, M.; Biamino, S.; Ugues, D.; Manfredi, D. Additive Manufacturing of Titanium Alloys in the Biomedical Field: Processes, Properties and Applications. J. Appl. Biomater. Funct. Mater. 2018, 16, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, G.J.; Hansell, R.G. Direct Tool Steel Injection Mould Inserts through the Arcam EBM Free-Form Fabrication Process. Assem. Autom. 2005, 25, 300–305. [Google Scholar] [CrossRef]
- Salmi, M.; Tuomi, J.; Paloheimo, K.S.; Björkstrand, R.; Paloheimo, M.; Salo, J.; Kontio, R.; Mesimäki, K.; Mäkitie, A.A. Patient-Specific Reconstruction with 3D Modeling and DMLS Additive Manufacturing. Rapid Prototyp. J. 2012, 18, 209–214. [Google Scholar] [CrossRef]
- Grecchi, F.; Zecca, P.A.; Macchi, A.; Mangano, A.; Riva, F.; Grecchi, E.; Mangano, C. Full-Digital Workflow for Fabricating a Custom-Made Direct Metal Laser Sintering (Dmls) Mandibular Implant: A Case Report. Int. J. Environ. Res. Public Health 2020, 17, 2693. [Google Scholar] [CrossRef] [Green Version]
- Gale, J.; Achuhan, A. Application of Ultrasonic Peening during DMLS Production of 316L Stainless Steel and Its Effect on Material Behavior. Rapid Prototyp. J. 2017, 23, 1185–1194. [Google Scholar] [CrossRef]
- Deckers, J.P.; Shahzad, K.; Cardon, L.; Rombouts, M.; Vleugels, J.; Kruth, J.P. Shaping Ceramics through Indirect Selective Laser Sintering. Rapid Prototyp. J. 2016, 22, 544–558. [Google Scholar] [CrossRef]
- Deckers, J.; Shahzad, K.; Vleugels, J.; Kruth, J.P. Isostatic Pressing Assisted Indirect Selective Laser Sintering of Alumina Components. Rapid Prototyp. J. 2012, 18, 409–419. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, Y.; Yang, Z.; Khoshnevis, B. Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography. Rapid Prototyp. J. 2013, 19, 153–165. [Google Scholar] [CrossRef]
- Bens, A.; Seitz, H.; Bermes, G.; Emons, M.; Pansky, A.; Roitzheim, B.; Tobiasch, E.; Tille, C. Non-Toxic Flexible Photopolymers for Medical Stereolithography Technology. Rapid Prototyp. J. 2007, 13, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Kan, C.W.; Yuen, C.W.M. Digital Ink-Jet Printing on Textiles. Res. J. Text. Appar. 2012, 16, 1–24. [Google Scholar] [CrossRef]
- El-Wahab, H.A.; El-Molla, M.M.; Lin, L. Preparation and Characterisation of Ink Formulations for Jet Printing on Nylon Carpet. Pigment Resin Technol. 2010, 39, 163–169. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, M.; Xu, B.; Chen, G. Review on Processes and Color Quality Evaluation of Color 3D Printing. Rapid Prototyp. J. 2018, 24, 409–415. [Google Scholar] [CrossRef]
- Mançanares, C.G.; de S. Zancul, E.; Cavalcante da Silva, J.; Cauchick Miguel, P.A. Additive Manufacturing Process Selection Based on Parts’ Selection Criteria. Int. J. Adv. Manuf. Technol. 2015, 80, 1007–1014. [Google Scholar] [CrossRef]
- Guo, Y.; Patanwala, H.S.; Bognet, B.; Ma, A.W.K. Inkjet and Inkjet-Based 3D Printing: Connecting Fluid Properties and Printing Performance. Rapid Prototyp. J. 2017, 23, 562–576. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Orellana, C.F.; Hu, Y.; Jones, C.D.; Liu, Y.; Chiang, D.Y.; Liu, J.; Prins, J.F. FDM: A Graph-Based Statistical Method to Detect Differential Transcription Using RNA-Seq Data. Bioinformatics 2011, 27, 2633–2640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spoerke, E.D.; Murray, N.G.; Li, H.; Brinson, L.C.; Dunand, D.C.; Stupp, S.I. A Bioactive Titanium Foam Scaffold for Bone Repair. Acta Biomater. 2005, 1, 523–533. [Google Scholar] [CrossRef]
- Bencharit, S.; Byrd, W.C.; Altarawneh, S.; Hosseini, B.; Leong, A.; Reside, G.; Morelli, T.; Offenbacher, S. Development and Applications of Porous Tantalum Trabecular Metal-Enhanced Titanium Dental Implants. Clin. Implant Dent. Relat. Res. 2014, 16, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of Titanium Surface Modification Techniques and Coatings for Antibacterial Applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Hussein, M.A.; Mohammed, A.S.; Al-Aqeeli, N. Wear Characteristics of Metallic Biomaterials: A Review. Materials 2015, 8, 2749–2768. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Ding, S.; Wen, C. Additive Manufacturing Technology for Porous Metal Implant Applications and Triple Minimal Surface Structures: A Review. Bioact. Mater. 2019, 4, 56–70. [Google Scholar] [CrossRef]
- Sansone, V.; Pagani, D.; Melato, M. The Effects on Bone Cells of Metal Ions Released from Orthopaedic Implants. A Review. Clin. Cases Miner. Bone Metab. 2013, 10, 34. [Google Scholar] [CrossRef]
- Taddei, E.B.; Henriques, V.A.R.; Silva, C.R.M.; Cairo, C.A.A. Production of New Titanium Alloy for Orthopedic Implants. Mater. Sci. Eng. C 2004, 24, 683–687. [Google Scholar] [CrossRef]
- Talha, M.; Behera, C.K.; Sinha, O.P. A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications. Mater. Sci. Eng. C 2013, 33, 3563–3575. [Google Scholar] [CrossRef]
- Sumita, M.; Hanawa, T.; Teoh, S.H. Development of Nitrogen-Containing Nickel-Free Austenitic Stainless Steels for Metallic Biomaterials. Mater. Sci. Eng. C 2004, 24, 753–760. [Google Scholar] [CrossRef]
- Nielsen, K. Corrosion of Metallic Implants. Br. Corros. J. 1987, 22, 272–278. [Google Scholar] [CrossRef]
- Godbole, N.; Yadav, S.; Ramachandran, M.; Belemkar, S. A Review on Surface Treatment of Stainless Steel Orthopedic Implants. Int. J. Pharm. Sci. Rev. Res. 2016, 36, 190–194. [Google Scholar]
- Buj-Corral, I.; Tejo-Otero, A.; Fenollosa-Artés, F. Development of Am Technologies for Metals in the Sector of Medical Implants. Metals 2020, 10, 686. [Google Scholar] [CrossRef]
- Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and Electron-beam Powder-bed Additive Manufacturing of Metallic Implants: A Review on Processes, Materials and Designs. J. Orthop. Res. 2016, 34, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Aherwar, A.; Singh, A.K.; Patnaik, A. Cobalt Based Alloy: A Better Choice Biomaterial for Hip Implants. Trends Biomater. Artif. Organs 2016, 30. [Google Scholar]
- Hussain, O.; Saleem, S.; Ahmad, B. Implant Materials for Knee and Hip Joint Replacement: A Review from the Tribological Perspective. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Tamilnadu, India, 2019; Volume 561, p. 12007. [Google Scholar]
- Ghalme, S.G.; Mankar, A.; Bhalerao, Y. Biomaterials in Hip Joint Replacement. Int. J. Mater. Sci. Eng. 2016, 4, 113–125. [Google Scholar]
- Almanza, E.; Pérez, M.J.; Rodríguez, N.A.; Murr, L.E. Corrosion Resistance of Ti-6Al-4V and ASTM F75 Alloys Processed by Electron Beam Melting. J. Mater. Res. Technol. 2017, 6, 251–257. [Google Scholar]
- Rudarstvo, R.Z.A.; Geologijo, M.I.N. Rmz—Materiali in Geookolje. Period. Mining Metall. Geol. 2010, 57, 1–158. [Google Scholar]
- Bartolo, P.; Kruth, J.-P.; Silva, J.; Levy, G.; Malshe, A.; Rajurkar, K.; Mitsuishi, M.; Ciurana, J.; Leu, M. Biomedical Production of Implants by Additive Electro-Chemical and Physical Processes. CIRP Ann. 2012, 61, 635–655. [Google Scholar] [CrossRef]
- Wang, W.; Khoon, C. Titanium Alloys in Orthopaedics. Titan. Alloy.—Adv. Prop. Control 2013, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Codell, M.; Norwitz, G.; Mikula, J.J. Analytical Chemistry of Titanium Alloys. Anal. Chem. 1955, 27, 1379–1383. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A.; Seifalian, A. Biomaterial Surface Modification of Titanium and Titanium Alloys for Medical Applications. Nanomedicine 2014, 111, 111. [Google Scholar]
- Narayanan, R.; Seshadri, S.K.; Kwon, T.Y.; Kim, K.H. Calcium Phosphate-Based Coatings on Titanium and Its Alloys. J. Biomed. Mater. Res.—Part B Appl. Biomater. 2008, 85, 279–299. [Google Scholar] [CrossRef]
- Cheng, X.; Roscoe, S.G. Corrosion Behavior of Titanium in the Presence of Calcium Phosphate and Serum Proteins. Biomaterials 2005, 26, 7350–7356. [Google Scholar] [CrossRef]
- Kirmanidou, Y.; Sidira, M.; Drosou, M.E.; Bennani, V.; Bakopoulou, A.; Tsouknidas, A.; Michailidis, N.; Michalakis, K. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. Biomed Res. Int. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Ltjering, G.; Williams, J.C. Titanium, Engineering Materials and Processes; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- McGilvray, K.C.; Easley, J.; Seim, H.B.; Regan, D.; Berven, S.H.; Hsu, W.K.; Mroz, T.E.; Puttlitz, C.M. Bony Ingrowth Potential of 3D-Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an in Vivo Ovine Lumbar Fusion Model. Spine J. 2018, 18, 1250–1260. [Google Scholar]
- Liu, S.; Shin, Y.C. Additive Manufacturing of Ti6Al4V Alloy: A Review. Mater. Des. 2019, 164, 107552. [Google Scholar] [CrossRef]
- Hao, Y.-L.; Li, S.-J.; Yang, R. Biomedical Titanium Alloys and Their Additive Manufacturing. Rare Met. 2016, 35, 661–671. [Google Scholar] [CrossRef]
- Hon, Y.-H.; Wang, J.-Y.; Pan, Y.-N. Composition/Phase Structure and Properties of Titanium-Niobium Alloys. Mater. Trans. 2003, 44, 2384–2390. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of Pore Size on Bone Ingrowth into Porous Titanium Implants Fabricated by Additive Manufacturing: An In Vivo Experiment. Mater. Sci. Eng. C 2016, 59, 690–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fousová, M.; Vojtěch, D.; Kubásek, J.; Jablonská, E.; Fojt, J. Promising Characteristics of Gradient Porosity Ti-6Al-4V Alloy Prepared by SLM Process. J. Mech. Behav. Biomed. Mater. 2017, 69, 368–376. [Google Scholar] [CrossRef]
- Levine, B.; Sporer, S.; Della Valle, C.J.; Jacobs, J.J.; Paprosky, W. Porous Tantalum in Reconstructive Surgery of the Knee–A Review. J. Knee Surg. 2007, 20, 185–194. [Google Scholar] [PubMed]
- Levine, B.R.; Sporer, S.; Poggie, R.A.; Della Valle, C.J.; Jacobs, J.J. Experimental and Clinical Performance of Porous Tantalum in Orthopedic Surgery. Biomaterials 2006, 27, 4671–4681. [Google Scholar] [CrossRef]
- Donachie, M.J.; Donachie, S.J. Superalloys: A Technical Guide; ASM International: Almere, The Netherlands, 2002; ISBN 1615030646. [Google Scholar]
- Balla, V.K.; Bose, S.; Davies, N.M.; Bandyopadhyay, A. Tantalum—A Bioactive Metal for Implants. Jom 2010, 62, 61–64. [Google Scholar]
- Lewallen, E.A.; Riester, S.M.; Bonin, C.A.; Kremers, H.M.; Dudakovic, A.; Kakar, S.; Cohen, R.C.; Westendorf, J.J.; Lewallen, D.G.; van Wijnen, A.J. Biological Strategies for Improved Osseointegration and Osteoinduction of Porous Metal Orthopedic Implants. Tissue Eng. Part B Rev. 2015, 21, 218–230. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, K.; Nakajima, H. Metallic Scaffolds for Bone Regeneration. Materials 2009, 2, 790–832. [Google Scholar]
- Kondo, R.; Nomura, N.; Suyalatu; Tsutsumi, Y.; Doi, H.; Hanawa, T. Microstructure and Mechanical Properties of As-Cast Zr-Nb Alloys. Acta Biomater. 2011, 7, 4278–4284. [Google Scholar] [CrossRef] [PubMed]
- Gomez, I.J.; Arnaiz, B.; Cacioppo, M.; Arcudi, F.; Prato, M. Nitrogen-Doped Carbon Nanodots for Bioimaging and Delivery of Paclitaxel. J. Mater. Chem. B 2018, 6, 5540–5548. [Google Scholar] [CrossRef]
- Suyalatu; Kondo, R.; Tsutsumi, Y.; Doi, H.; Nomura, N.; Hanawa, T. Effects of Phase Constitution on Magnetic Susceptibility and Mechanical Properties of Zr-Rich Zr-Mo Alloys. Acta Biomater. 2011, 7, 4259–4266. [Google Scholar] [CrossRef]
- Zhuang, H.; Han, Y.; Feng, A. Preparation, Mechanical Properties and in Vitro Biodegradation of Porous Magnesium Scaffolds. Mater. Sci. Eng. C 2008, 28, 1462–1466. [Google Scholar] [CrossRef]
- Elkaiam, L.; Hakimi, O.; Goldman, J.; Aghion, E. The Effect of Nd on Mechanical Properties and Corrosion Performance of Biodegradable Mg-5% Zn Alloy. Metals 2018, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Prasadh, S.; Ratheesh, V.; Manakari, V.; Parande, G.; Gupta, M.; Wong, R. The Potential of Magnesium Based Materials in Mandibular Reconstruction. Metals 2019, 9, 302. [Google Scholar] [CrossRef] [Green Version]
- Oliveri, V. Biomedical Applications of Copper Ionophores. Coord. Chem. Rev. 2020, 422, 213474. [Google Scholar] [CrossRef]
- Arun Kumar, S.; Balasubramaniam, B.; Bhunia, S.; Jaiswal, M.K.; Verma, K.; Khademhosseini, A.; Gupta, R.K.; Gaharwar, A.K. Two-dimensional Metal Organic Frameworks for Biomedical Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1674. [Google Scholar] [CrossRef]
- Su, Y.; Cockerill, I.; Wang, Y.; Qin, Y.-X.; Chang, L.; Zheng, Y.; Zhu, D. Zinc-Based Biomaterials for Regeneration and Therapy. Trends Biotechnol. 2019, 37, 428–441. [Google Scholar] [CrossRef]
- Jakus, A.E.; Secor, E.B.; Rutz, A.L.; Jordan, S.W.; Hersam, M.C.; Shah, R.N. Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano 2015, 9, 4636–4648. [Google Scholar] [CrossRef]
- Subramanian, B.; Muraleedharan, C.V.; Ananthakumar, R.; Jayachandran, M. A Comparative Study of Titanium Nitride (TiN), Titanium Oxy Nitride (TiON) and Titanium Aluminum Nitride (TiAlN), as Surface Coatings for Bio Implants. Surf. Coat. Technol. 2011, 205, 5014–5020. [Google Scholar] [CrossRef]
- Rokosz, K.; Hryniewicz, T.; Raaen, S. Development of Plasma Electrolytic Oxidation for Improved Ti6Al4V Biomaterial Surface Properties. Int. J. Adv. Manuf. Technol. 2016, 85, 2425–2437. [Google Scholar] [CrossRef]
- Awasthi, A.; Saxena, K.K.; Dwivedi, R.K. An Investigation on Classification and Characterization of Bio Materials and Additive Manufacturing Techniques for Bioimplants. Mater. Today Proc. 2021, 44, 2061–2068. [Google Scholar] [CrossRef]
- Widu, F.; Drescher, D.; Junker, R.; Bourauel, C. Corrosion and Biocompatibility of Orthodontic Wires. J. Mater. Sci. Mater. Med. 1999, 10, 275–281. [Google Scholar] [CrossRef]
- Niinomi, M. Recent Metallic Materials for Biomedical Applications. Metall. Mater. Trans. A 2002, 33, 477–486. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.J.; Parikh, D.M. A Review on Applications of Nitinol Shape Memory Alloy. Recent Adv. Mech. Infrastruct. 2021, 123–132. [Google Scholar]
- Aihara, H.; Zider, J.; Fanton, G.; Duerig, T. Combustion Synthesis Porous Nitinol for Biomedical Applications. Int. J. Biomater. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gorgin Karaji, Z.; Speirs, M.; Dadbakhsh, S.; Kruth, J.-P.; Weinans, H.; Zadpoor, A.A.; Amin Yavari, S. Additively Manufactured and Surface Biofunctionalized Porous Nitinol. ACS Appl. Mater. Interfaces 2017, 9, 1293–1304. [Google Scholar] [CrossRef]
- Duerig, T.; Pelton, A.; Stöckel, D. An Overview of Nitinol Medical Applications. Mater. Sci. Eng. A 1999, 273, 149–160. [Google Scholar] [CrossRef]
- Shabalovskaya, S.; Anderegg, J.; Van Humbeeck, J. Critical Overview of Nitinol Surfaces and Their Modifications for Medical Applications. Acta Biomater. 2008, 4, 447–467. [Google Scholar] [CrossRef]
- Liu, Y.; Enggist, L.; Kuffer, A.F.; Buser, D.; Hunziker, E.B. The Influence of BMP-2 and Its Mode of Delivery on the Osteoconductivity of Implant Surfaces during the Early Phase of Osseointegration. Biomaterials 2007, 28, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Jinno, T.; Goldberg, V.M.; Davy, D.; Stevenson, S. Osseointegration of Surface-Blasted Implants Made of Titanium Alloy and Cobalt-Chromium Alloy in a Rabbit Intramedullary Model. J. Biomed. Mater. Res. 1998, 42, 20–29. [Google Scholar] [CrossRef]
- Levine, B.; Della Valle, C.J.; Jacobs, J.J. Applications of Porous Tantalum in Total Hip Arthroplasty. J. Am. Acad. Orthop. Surg. 2006, 14, 646–655. [Google Scholar] [CrossRef]
- Sidambe, A.T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, N.B. Medical Shape Memory Alloy Applications—The Market and Its Products. Mater. Sci. Eng. A 2004, 378, 16–23. [Google Scholar] [CrossRef]
- Kourra, N.; Warnett, J.M.; Attridge, A.; Dibling, G.; McLoughlin, J.; Muirhead-Allwood, S.; King, R.; Williams, M.A. Computed Tomography Metrological Examination of Additive Manufactured Acetabular Hip Prosthesis Cups. Addit. Manuf. 2018, 22, 146–152. [Google Scholar] [CrossRef]
- Wycisk, E.; Solbach, A.; Siddique, S.; Herzog, D.; Walther, F.; Emmelmann, C. Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties. Phys. Procedia 2014, 56, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Moussa, A.; Melancon, D.; El Elmi, A.; Pasini, D. Topology Optimization of Imperfect Lattice Materials Built with Process-Induced Defects via Powder Bed Fusion. Addit. Manuf. 2021, 37, 101608. [Google Scholar] [CrossRef]
- Gebisa, A.W.; Lemu, H.G. A Case Study on Topology Optimized Design for Additive Manufacturing. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Stavanger, Norway, 2017; Volume 276, p. 12026. [Google Scholar]
- Popovich, A.; Sufiiarov, V.; Polozov, I.; Borisov, E.; Masaylo, D. Producing Hip Implants of Titanium Alloys by Additive Manufacturing. Int. J. Bioprinting 2016, 2, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, S.; Abbaszadeh, F.; Farahmand, F. An Improved Methodology for Design of Custom-made Hip Prostheses to Be Fabricated Using Additive Manufacturing Technologies. Rapid Prototyp. J. 2012, 18, 389–400. [Google Scholar] [CrossRef]
- Guo, N.; Leu, M.C. Additive Manufacturing: Technology, Applications and Research Needs. Front. Mech. Eng. 2013, 8, 215–243. [Google Scholar] [CrossRef]
- De Viteri, V.S.; Fuentes, E. Titanium and Titanium Alloys as Biomaterials, Tribology—Fundamentals and Advancements. Tribol.—Fundam. Adv. 2013, 55, 561–565. [Google Scholar] [CrossRef] [Green Version]
- Lele, A. Additive Manufacturing (AM). Smart Innov. Syst. Technol. 2019, 132, 101–109. [Google Scholar] [CrossRef]
- Gardan, N.; Schneider, A. Topological Optimization of Internal Patterns and Support in Additive Manufacturing. J. Manuf. Syst. 2015, 37, 417–425. [Google Scholar] [CrossRef]
- Attallah, P.M.M. Metals and Alloys for Implants & Medical Devices; 2017; Available online: http://www.cost-newgen.org/wp-content/uploads/2017/06/BioMatSchool_ATTALLAH.pdf (accessed on 1 November 2022).
- Cui, C.; Hu, B.M.; Zhao, L.; Liu, S. Titanium Alloy Production Technology, Market Prospects and Industry Development. Mater. Des. 2011, 32, 1684–1691. [Google Scholar] [CrossRef]
- Wong, T.M.; Jin, J.; Lau, T.W.; Fang, C.; Yan, C.H.; Yeung, K.; To, M.; Leung, F. The use of three-dimensional printing technology in orthopaedic surgery: A Review. J. Orthop. Surg. 2017, 25, 2309499016684077. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.; Rosen, D. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2014; ISBN 9781493921126. [Google Scholar]
- Mohammed, M.T. ScienceDirect Development of a New Metastable Beta Titanium Alloy for Biomedical Applications. Karbala Int. J. Mod. Sci. 2017, 3, 224–230. [Google Scholar] [CrossRef]
- Niinomi, M. Titanium Alloys for Biomedical, Dental, and Healthcare Applications. Ti-2007 Sci. Technol. 2007, 2, 1417–1424. [Google Scholar]
- Moussa, A.; Rahman, S.; Xu, M.; Tanzer, M.; Pasini, D. Topology Optimization of 3D-Printed Structurally Porous Cage for Acetabular Reinforcement in Total Hip Arthroplasty. J. Mech. Behav. Biomed. Mater. 2020, 105, 103705. [Google Scholar] [CrossRef]
- Diah, M. Evidence of the Effect of Darwin Topiramate in the Treatment of Bipolar Disorder. Available online: http://dlib.sbmu.ac.ir/site/catalogue/28667 (accessed on 1 November 2022).
- Hamweendo, A. Fabrication of Porous Structures Using Cold Gas Dynamic Spray. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2017. [Google Scholar]
- Jiang, J.; Xu, X.; Stringer, J. Support Structures for Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2018, 2, 64. [Google Scholar] [CrossRef] [Green Version]
- Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J.A. Biomaterials in Orthopaedics. J. R. Soc. Interface 2008, 5, 1137–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, H.; Patralekh, M.K. 3D Printing and Its Applications in Orthopaedic Trauma: A Technological Marvel. J. Clin. Orthop. Trauma 2018, 9, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Chartier, T.; Chaput, C.; Doreau, F.; Loiseau, M. Stereolithography of Structural Complex Ceramic Parts. J. Mater. Sci. 2002, 7, 3141–3147. [Google Scholar] [CrossRef]
- Series, I.O.P.C.; Science, M. Research and Development of Ti and Ti Alloys: Past, Present and Future. IOP Conf. Ser. Mater. Sci. Eng. 2018, 430, 012007. [Google Scholar] [CrossRef]
- Why Is Titanium the Metal of Choice for Medical Applications from Head to Toe? Unique Properties Make Titanium the Ultimate Biomedical Choice; 1950; Available online: http://titaniumthemetal.org/Resources/DataSheetMedical.pdf (accessed on 1 November 2022).
- Brar, H.S.; Platt, M.O.; Sarntinoranont, M.; Martin, P.I.; Manuel, M.V. Magnesium as a Biodegradable and Bioabsorbable Material for Medical Implants. Jom 2009, 61, 31–34. [Google Scholar] [CrossRef]
- Duz, V.; Matviychuk, M.; Klevtsov, A.; Moxson, V. Industrial Application of Titanium Hydride Powder. Met. Powder Rep. 2017, 72, 30–38. [Google Scholar] [CrossRef]
- Cheng, L.; Liang, X.; Bai, J.; Chen, Q.; Lemon, J.; To, A. On Utilizing Topology Optimization to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed Metal Additive Manufacturing. Addit. Manuf. 2019, 27, 290–304. [Google Scholar] [CrossRef]
- Yang, D.; Shao, H.; Guo, Z.; Lin, T.; Fan, L. Preparation and Properties of Biomedical Porous Titanium Alloys by Gelcasting. Biomed. Mater. 2011, 6, 045010. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Martinez, E.; Medina, F.; Wicker, R.B. Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting. Int. J. Biomater. 2012, 2012, 251. [Google Scholar] [CrossRef]
- Wu, N.; Li, S.; Zhang, B.; Wang, C.; Chen, B.; Han, Q.; Wang, J. The Advances of Topology Optimization Techniques in Orthopedic Implants: A Review. Med. Biol. Eng. Comput. 2021, 59, 1673–1689. [Google Scholar] [CrossRef] [PubMed]
- Oldani, C.; Dominguez, A. Titanium as a Biomaterial for Implants. Recent Adv. Arthroplast. 2012, 218, 149–162. [Google Scholar] [CrossRef] [Green Version]
- Zaman, H.A.; Sharif, S.; Idris, M.H.; Kamarudin, A. Metallic Biomaterials for Medical Implant Applications: A Review. Appl. Mech. Mater. 2015, 735, 19–25. [Google Scholar] [CrossRef]
- Veiga, C.; Davim, J.P.; Loureiro, A.J.R. Review on Machinability of Titanium Alloys: The Process Perspective. Rev. Adv. Mater. Sci. 2013, 34, 148–164. [Google Scholar]
- Iqbal, T.; Wang, L.; Li, D.; Dong, E.; Fan, H.; Fu, J.; Hu, C. A General Multi-Objective Topology Optimization Methodology Developed for Customized Design of Pelvic Prostheses. Med. Eng. Phys. 2019, 69, 8–16. [Google Scholar] [CrossRef]
- Hendra, H.; Dadan, R.; Hermawan, H.; Ramdan, D.; Djuansjah, J.R.P. Metals for Biomedical Applications. Biomed. Eng.—Theory Appl. 2011, 1, 411–431. [Google Scholar]
- Issue, S.; Biomaterials, T. Special Issue: Ti-Based Biomaterials: Synthesis. Materials 2020, 13, 1696. [Google Scholar]
- Sodian, R.; Weber, S.; Markert, M.; Loeff, M.; Lueth, T.; Weis, F.C. Pediatric Cardiac Transplantation: Three-Dimensional Printing of Anatomic Models for Surgical Planning of Heart Transplantation in Patients with Univentricular Heart. J. Thorac. Cardiovasc. Surg. 2008, 1098–1099. [Google Scholar] [CrossRef]
- Rouhi, G.; Hamedani, M. A Brief Introduction into Orthopaedic Implants: Screws, Plates, and Nails. 2012. Available online: https://www.researchgate.net/publication/309923041 (accessed on 1 November 2022).
- Zhang, J.; Yanagimoto, J. Topology Optimization of Microlattice Dome with Enhanced Stiffness and Energy Absorption for Additive Manufacturing. Compos. Struct. 2021, 255, 112889. [Google Scholar] [CrossRef]
- Niemeyer, T.C.; Grandini, C.R.; Pinto, L.M.C.; Angelo, A.C.D.; Schneider, S.G. Corrosion Behavior of Ti—13Nb—13Zr Alloy Used as a Biomaterial. J. Alloys Compd. 2009, 476, 172–175. [Google Scholar] [CrossRef]
- Okazaki, Y. Corrosion Resistance and Corrosion Fatigue Strength of New Titanium Alloys for Medical Implants without V and A1. Mater. Sci. Eng. A 1996, 213, 138–147. [Google Scholar] [CrossRef]
- Kladovasilakis, N.; Tsongas, K.; Tzetzis, D. Finite Element Analysis of Orthopedic Hip Implant with Functionally Graded Bioinspired Lattice Structures. Biomimetics 2020, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M.; Nakai, M. Titanium-Based Biomaterials for Preventing Stress Shielding between Implant Devices and Bone. Int. J. Biomater. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subaşi, M.; Karataş, Ç. Titanyum ve Titanyum Alaşımlarından Yapılan İmplantlar Üzerine İnceleme A Review on Implants Made of Titanium and Titanium Alloys. Politeknik Dergisi 2012, 15, 87–103. [Google Scholar]
- Mahyudin, F.; Widhiyanto, L.; Hermawan, H. Biomaterials in Orthopaedics. In Biomaterials and Medical Devices; Springer: Berlin/Heidelberg, Germany, 2016; pp. 161–181. [Google Scholar]
- Atesok, K.; Mabrey, J.D.; Jazrawi, L.M.; Egol, K.A. Surgical Simulation in Orthopaedic Skills Training. JAAOS-J. Am. Acad. Orthop. Surg. 2012, 20, 410–422. [Google Scholar]
- Gao, C.; Wang, C.; Jin, H.; Wang, Z.; Li, Z.; Shi, C.; Leng, Y.; Yang, F.; Liu, H.; Wang, J. Additive Manufacturing Technique-Designed Metallic Porous Implants for Clinical Application in Orthopedics. RSC Adv. 2018, 8, 25210–25227. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.C. 3D-Printed Patient-Specific Applications in Orthopedics. Orthop. Res. Rev. 2016, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Harun, W.S.W.; Kamariah, M.; Muhamad, N.; Ghani, S.A.C.; Ahmad, F.; Mohamed, Z. A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials. Powder Technol. 2018, 327, 128–151. [Google Scholar] [CrossRef]
- Elahinia, M.H.; Hashemi, M.; Tabesh, M.; Bhaduri, S.B. Manufacturing and Processing of NiTi Implants: A Review. Prog. Mater. Sci. 2012, 57, 911–946. [Google Scholar] [CrossRef]
- Martelli, N.; Serrano, C.; van den Brink, H.; Pineau, J.; Prognon, P.; Borget, I.; El Batti, S. Advantages and Disadvantages of 3-Dimensional Printing in Surgery: A Systematic Review. Surgery 2016, 159, 1485–1500. [Google Scholar] [CrossRef]
- Vaezi, M.; Seitz, H.; Yang, S. A Review on 3D Micro-Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754. [Google Scholar] [CrossRef]
- Da Silva, L.R.R.; Sales, W.F.; Campos, F.d.A.R.; de Sousa, J.A.G.; Davis, R.; Singh, A.; Coelho, R.T.; Borgohain, B. A Comprehensive Review on Additive Manufacturing of Medical Devices. Prog. Addit. Manuf. 2021, 6, 517–553. [Google Scholar] [CrossRef]
- Emelogu, A.; Marufuzzaman, M.; Thompson, S.M.; Shamsaei, N.; Bian, L. Additive Manufacturing of Biomedical Implants: A Feasibility Assessment via Supply-Chain Cost Analysis. Addit. Manuf. 2016, 11, 97–113. [Google Scholar] [CrossRef]
- Vignesh, M.; Ranjith Kumar, G.; Sathishkumar, M.; Manikandan, M.; Rajyalakshmi, G.; Ramanujam, R.; Arivazhagan, N. Development of Biomedical Implants through Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2021, 30, 4735–4744. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A. Current Status and Challenges of Additive Manufacturing in Orthopaedics: An Overview. J. Clin. Orthop. Trauma 2019, 10, 380–386. [Google Scholar] [CrossRef]
- Gospodinov, D.; Ferdinandov, N.; Dimitrov, S. Classification, Properties and Application of Titanium and Its Alloys. Proc. Univ. Ruse 2016, 55, 27–32. [Google Scholar]
- Abdel-Hady Gepreel, M.; Niinomi, M. Biocompatibility of Ti-Alloys for Long-Term Implantation. J. Mech. Behav. Biomed. Mater. 2013, 20, 407–415. [Google Scholar] [CrossRef]
- Yuan, B.; Zhu, M.; Chung, C.Y. Biomedical Porous Shape Memory Alloys for Hard-Tissue Replacement Materials. Materials 2018, 11, 1716. [Google Scholar] [CrossRef] [Green Version]
- Niinomi, M. Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications. J. Mech. Behav. Biomed. Mater. 2008, 1, 30–42. [Google Scholar] [CrossRef]
- Kunčická, L.; Kocich, R.; Lowe, T.C. Advances in Metals and Alloys for Joint Replacement. Prog. Mater. Sci. 2017, 88, 232–280. [Google Scholar] [CrossRef]
- Do Prado, R.F.; Rabêlo, S.B.; de Andrade, D.P.; Nascimento, R.D.; Henriques, V.A.R.; Carvalho, Y.R.; Cairo, C.A.A.; de Vasconcellos, L.M.R. Porous Titanium and Ti–35Nb Alloy: Effects on Gene Expression of Osteoblastic Cells Derived from Human Alveolar Bone. J. Mater. Sci. Mater. Med. 2015, 26, 1–11. [Google Scholar] [CrossRef]
- Matsuno, H.; Yokoyama, A.; Watari, F.; Uo, M.; Kawasaki, T. Biocompatibility and Osteogenesis of Refractory Metal Implants, Titanium, Hafnium, Niobium, Tantalum and Rhenium. Biomaterials 2001, 22, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, R.; Watari, F.; Takashi, N.; Tanimura, Y.; Uo, M.; Totsuka, Y. Effects of Ti Ions and Particles on Neutrophil Function and Morphology. Biomaterials 2002, 23, 3757–3764. [Google Scholar] [CrossRef] [PubMed]
- McCutchen, D.; Dibble, E.; Blount, M.M. Phonemic Effects in Reading Comprehension and Text Memory. Appl. Cogn. Psychol. 1994, 8, 597–611. [Google Scholar] [CrossRef]
- Liu, Z.; He, B.; Lyu, T.; Zou, Y. A Review on Additive Manufacturing of Titanium Alloys for Aerospace Applications: Directed Energy Deposition and beyond Ti-6Al-4V. Jom 2021, 73, 1804–1818. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [Green Version]
- Agapovichev, A.; Sotov, A.; Kokareva, V.; Smelov, V. Possibilities and Limitations of Titanium Alloy Additive Manufacturing. MATEC Web Conf. 2018, 224, 01064. [Google Scholar] [CrossRef]
- Abou Neel, E.A.; Knowles, J.C. Physical and Biocompatibility Studies of Novel Titanium Dioxide Doped Phosphate-Based Glasses for Bone Tissue Engineering Applications. J. Mater. Sci. Mater. Med. 2008, 19, 377–386. [Google Scholar] [CrossRef]
- Niinomi, M. Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods. Sci. Technol. Adv. Mater. 2003, 4, 445. [Google Scholar] [CrossRef] [Green Version]
- Hatori, T.; Morikawa, K.; Niwa, S.; Niinomi, M.; Suzuki, A. Bone Tissue Reaction to New b Titanium Low Rigidity Alloy: Rabit Study on Bone Healing Remodeling and Atrophy in Intramedullary Fracture Fixation. In Proceedings of the International Conference on Biomechanics Combined with the Annual Scientific Meeting of Taiwanese Society of Biomechanics, Taipei, Taiwan, 9–11 November 2001. [Google Scholar]
- Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M.; Suzuki, A. Material Rigidity of Fracture Fixation Device and Bone Tissue Reaction—Experimantal Study on Intramedullary Fixation with Different Materials. J. Jpn. Clin. Biomech. 2002, 23, 299–304. [Google Scholar]
- Ratha, I.; Datta, P.; Balla, V.K.; Nandi, S.K.; Kundu, B. Effect of Doping in Hydroxyapatite as Coating Material on Biomedical Implants by Plasma Spraying Method: A Review. Ceram. Int. 2021, 47, 4426–4445. [Google Scholar] [CrossRef]
- Manivasagam, V.K.; Sabino, R.M.; Kantam, P.; Popat, K. Surface Modification Strategies to Improve Titanium Hemocompatibility: A Comprehensive Review. Mater. Adv. 2021, 2, 5824–5842. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M. Biologically and Mechanically Biocompatible Titanium Alloys. Mater. Trans. 2008, 49, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Why Is Titanium Biocompatible? Available online: http://www.ors.org/Transactions/58/0981.pdf (accessed on 1 November 2022).
- Sobieszczyk, S. Surface Modifications of Ti and Its Alloys. Adv. Mater. Sci. 2010, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, M.; Mazare, A.; Schmuki, P.; Iglič, A. Applications Outline: 111–136. Available online: https://www.researchgate.net/publication/265292794 (accessed on 1 November 2022).
- Mohammed, M.T.; Khan, Z.A.; Siddiquee, A.N. Surface Modifications of Titanium Materials for Developing Corrosion Behavior in Human Body Environment: A Review. Procedia Mater. Sci. 2014, 6, 1610–1618. [Google Scholar] [CrossRef] [Green Version]
- Cronskär, M.; Bäckström, M.; Rännar, L. Production of Customized Hip Stem Prostheses–a Comparison between Conventional Machining and Electron Beam Melting (EBM). Rapid Prototyp. J. 2013, 19, 365–372. [Google Scholar] [CrossRef]
- Galati, M.; Rizza, G.; Defanti, S.; Denti, L. Surface Roughness Prediction Model for Electron Beam Melting (EBM) Processing Ti6Al4V. Precis. Eng. 2021, 69, 19–28. [Google Scholar] [CrossRef]
- Lebea, L.; Ngwangwa, H.M.; Desai, D.; Nemavhola, F. Experimental Investigation into the Effect of Surface Roughness and Mechanical Properties of 3D-Printed Titanium Ti-64 ELI after Heat Treatment. Int. J. Mech. Mater. Eng. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Murr, L.E.; Amato, K.N.; Li, S.J.; Tian, Y.X.; Cheng, X.Y.; Gaytan, S.M.; Martinez, E.; Shindo, P.W.; Medina, F.; Wicker, R.B. Microstructure and Mechanical Properties of Open-Cellular Biomaterials Prototypes for Total Knee Replacement Implants Fabricated by Electron Beam Melting. J. Mech. Behav. Biomed. Mater. 2011, 4, 1396–1411. [Google Scholar] [CrossRef]
- Liu, P.; Yang, Y.; Liu, R.; Shu, H.; Gong, J.; Yang, Y.; Sun, Q.; Wu, X.; Cai, M. A Study on the Mechanical Characteristics of the EBM-Printed Ti-6Al-4V LCP Plates in Vitro. J. Orthop. Surg. Res. 2014, 9, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruppert, D.S.; Harrysson, O.L.A.; Marcellin-Little, D.J.; Abumoussa, S.; Dahners, L.E.; Weinhold, P.S. Osseointegration of Coarse and Fine Textured Implants Manufactured by Electron Beam Melting and Direct Metal Laser Sintering. 3D Print. Addit. Manuf. 2017, 4, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.L.; Goswami, T. Hip Implants VII: Finite Element Analysis and Optimization of Cross-Sections. Mater. Des. 2008, 29, 1438–1446. [Google Scholar] [CrossRef]
- Bashiri, A.; Sallam, H.E.M.; Abd-Elhady, A.A. Progressive Failure Analysis of a Hip Joint Based on Extended Finite Element Method. Eng. Fail. Anal. 2020, 117, 104829. [Google Scholar] [CrossRef]
- Sutradhar, A.; Park, J.; Carrau, D.; Nguyen, T.H.; Miller, M.J.; Paulino, G.H. Designing Patient-Specific 3D Printed Craniofacial Implants Using a Novel Topology Optimization Method. Med. Biol. Eng. Comput. 2016, 54, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A Comparison of Traditional Manufacturing vs Additive Manufacturing, the Best Method for the Job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar] [CrossRef]
- Babić, M.; Verić, O.; Božić, Ž.; Sušić, A. Finite Element Modelling and Fatigue Life Assessment of a Cemented Total Hip Prosthesis Based on 3D Scanning. Eng. Fail. Anal. 2020, 113, 104536. [Google Scholar] [CrossRef]
- Sedmak, A.; Čolić, K.; Grbović, A.; Balać, I.; Burzić, M. Numerical Analysis of Fatigue Crack Growth of Hip Implant. Eng. Fract. Mech. 2019, 216, 106492. [Google Scholar] [CrossRef]
- Pimenta, A.R.; Tavares, S.S.M.; Dias, D.F.; Correa, S.R.; Sobreiro, A.L.; Diniz, M.G. Failure Analysis of a Titanium Hip Prosthesis. J. Fail. Anal. Prev. 2021, 21, 28–35. [Google Scholar] [CrossRef]
- Vilardell, A.M.; Fredriksson, G.; Yadroitsev, I.; Krakhmalev, P. Fracture Mechanisms in the As-Built and Stress-Relieved Laser Powder Bed Fusion Ti6Al4V ELI Alloy. Opt. Laser Technol. 2019, 109, 608–615. [Google Scholar] [CrossRef]
- Du Plessis, A.; le Roux, S.G. Standardized X-ray Tomography Testing of Additively Manufactured Parts: A Round Robin Test. Addit. Manuf. 2018, 24, 125–136. [Google Scholar] [CrossRef]
- Du Plessis, A.; Yadroitsava, I.; Yadroitsev, I. Effects of Defects on Mechanical Properties in Metal Additive Manufacturing: A Review Focusing on X-ray Tomography Insights. Mater. Des. 2020, 187, 108385. [Google Scholar]
- Sigmund, O.; Maute, K. Topology Optimization Approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar]
- Eschenauer, H.A.; Olhoff, N. Topology Optimization of Continuum Structures: A Review. Appl. Mech. Rev. 2001, 54, 331–390. [Google Scholar] [CrossRef]
- Belwanshi, M.; Jayaswal, P.; Aherwar, A. A Study on Finite Element Analysis Methodologies and Approaches Used for Total Hip Arthroplasty. Mater. Today Proc. 2022, 56, 2596–2604. [Google Scholar] [CrossRef]
- Milovanović, A.; Sedmak, A.; Grbović, A.; Mijatović, T.; Čolić, K. Design Aspects of Hip Implant Made of Ti-6Al-4V Extra Low Interstitials Alloy. Procedia Struct. Integr. 2020, 26, 299–305. [Google Scholar] [CrossRef]
- Tan, N.; van Arkel, R.J. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding. Materials 2021, 14, 7184. [Google Scholar] [CrossRef]
- Zadpoor, A.A. Meta-Biomaterials. Biomater. Sci. 2020, 8, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, C.; Zhang, W.; Li, Y. Fabrication and Characterization of Porous Ti6Al4V Parts for Biomedical Applications Using Electron Beam Melting Process. Mater. Lett. 2009, 63, 403–405. [Google Scholar] [CrossRef]
- Wang, Q.S.; Li, S.J.; Hou, W.T.; Wang, S.G.; Hao, Y.L.; Yang, R.; Misra, R.D.K. Mechanistic Understanding of Compression-Compression Fatigue Behavior of Functionally Graded Ti–6Al–4V Mesh Structure Fabricated by Electron Beam Melting. J. Mech. Behav. Biomed. Mater. 2020, 103, 103590. [Google Scholar] [CrossRef]
- Chua, C.K.; Leong, K.F.; An, J. Introduction to Rapid Prototyping of Biomaterials. In Rapid Prototyping of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–15. [Google Scholar]
- Sing, S.L.; Tey, C.F.; Tan, J.H.K.; Huang, S.; Yeong, W.Y. 3D Printing of Metals in Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing. In Rapid Prototyping of Biomaterials; Elsevier: Amsterdam, The Netherlands, 2020; pp. 17–40. [Google Scholar]
- Fan, H.; Fu, J.; Li, X.; Pei, Y.; Li, X.; Pei, G.; Guo, Z. Implantation of Customized 3-D Printed Titanium Prosthesis in Limb Salvage Surgery: A Case Series and Review of the Literature. World J. Surg. Oncol. 2015, 13, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Gong, C.; Chen, X.; Sun, Y.; Zhang, J.; Cai, L. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals 2019, 9, 1004. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wen, P.; Voshage, M.; Jauer, L.; Qin, Y.; Schleifenbaum, J.H.; Poprawe, R. Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Implants: Effect of Gas Flow on Evaporation and Formation Quality Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Implants: Effect of Gas Fl Ow on Evaporation and Formatio. J. Laser Appl. 2019, 31, 022304. [Google Scholar] [CrossRef]
- Mahmoud, D.; Elbestawi, M. Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review. J. Manuf. Mater. Process. 2017, 1, 13. [Google Scholar] [CrossRef]
- Shahali, H.; Jaggessar, A.; Yarlagadda, P.K.D.V. Recent Advances in Manufacturing and Surface Modification of Titanium Orthopaedic Applications. Procedia Eng. 2017, 174, 1067–1076. [Google Scholar] [CrossRef]
- Hagberg, K.; Häggström, E.; Jönsson, S.; Rydevik, B.; Brånemark, R. Prosthetic Limbs. 131–132. Available online: https://journals.sagepub.com/doi/pdf/10.1177/0309364611409003 (accessed on 1 November 2022).
- Khorasani, A.M.; Goldberg, M.; Doeven, E.H.; Littlefair, G. Titanium in Biomedical Applications—Properties and Fabrication: A Review. J. Biomater. Tissue Eng. 2015, 5, 593–619. [Google Scholar] [CrossRef]
- Majumdar, T.; Eisenstein, N.; Frith, J.E.; Cox, S.C.; Birbilis, N. Additive Manufacturing of Titanium Alloys for Orthopedic Applications: A Materials Science Viewpoint. Adv. Eng. Mater. 2018, 20, 1800172. [Google Scholar] [CrossRef]
SI No. | AM Techniques | Medical Application | References |
---|---|---|---|
1. | Electron beam melting (EBM) | Fabrication of implant | [124,125,126] |
2. | Direct metal laser sintering (DMLS) | Manufacturing of prostheses or implants | [127,128,129] |
3. | Selective laser sintering (SLS) | Customized implants for training, human anatomy | [88,130,131] |
4. | Stereolithography (SLA) | Prosthetics, anatomical model | [132,133] |
5. | Multijet printing | Orthopedics, dental | [134,135] |
6. | Color jet printing (CJP) | Implants of heart | [136,137] |
7. | Inkjet 3D printing | Surgical planning, medical Education | [137,138] |
Implant Material | Elastic Modulus (GPa) | Yield Strength (MPa) | Ultimate Strength (MPa) | Density (g cm−3) | Corrosive Resistance | Biocompatibility | References |
---|---|---|---|---|---|---|---|
Porous tantalum | 2.5–3.9 | 35–51 | 50–110 | - | Highly corrosive resistance | Excellent | [173] |
Unalloyed tantalum | 186 | 138–345 | 207–517 | - | Highly corrosive resistance | Good | [198] |
Cobalt–chrome (Co-Cr-Mo) alloys | 220–230 | 275–1585 | 600–1785 | 8.9 | Highly corrosive resistant even in Cl− environments | Excellent | [199] |
Titanium and titanium alloy (Ti-6Al-4V) | 110–119 | 850–900 | 960–970 | 4.5 | Stable oxide layer (Titania–TiO2) on the titanium surface (2 nm thick) | Excellent | [200] |
Stainless steel | 200 | 215 MPa | 505 MPa | 7.6 | Highly corrosive resistance due to high Cr content | Excellent | [199] |
Journal | AM Process | Objectives | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PBF | ME | VP | MJ | BJ | SL | DED | 1 | 2 | 3 | 4 | 5 | 6 | |
[209] | × | × | × | × | × | √ | |||||||
[210] | √ | √ | √ | ||||||||||
[211] | × | × | × | × | × | √ | √ | ||||||
[212] | × | × | × | √ | √ | ||||||||
[213] | √ | √ | √ | √ | |||||||||
[214] | × | √ | √ | √ | |||||||||
[215] | √ | ||||||||||||
[216] | × | × | × | × | × | × | × | √ | |||||
[77] | × | × | √ | √ | √ | ||||||||
[217] | √ | √ | √ | ||||||||||
[218] | × | √ | √ | ||||||||||
[219] | × | × | × | × | √ | ||||||||
[220] | √ | ||||||||||||
[221] | × | × | √ | ||||||||||
[222] | × | × | × | × | × | √ | |||||||
[223] | √ | √ | √ | ||||||||||
[224] | × | × | × | × | √ | √ | |||||||
[225] | × | √ | |||||||||||
[226] | × | √ | √ | √ | √ | ||||||||
[227] | √ | √ | √ | ||||||||||
[228] | × | × | √ | ||||||||||
[229] | √ | ||||||||||||
[230] | × | × | × | √ | √ | ||||||||
[231] | × | × | √ | √ | |||||||||
[232] | × | √ | √ | ||||||||||
[233] | √ | ||||||||||||
[234] | √ | √ | √ | ||||||||||
[235] | √ | ||||||||||||
[201] | × | × | × | √ | |||||||||
[236] | × | × | × | √ | √ | ||||||||
[237] | √ | ||||||||||||
[238] | √ | ||||||||||||
[239] | √ | ||||||||||||
[240] | × | √ | √ | ||||||||||
[241] | × | × | × | × | √ | ||||||||
[242] | × | × | √ | ||||||||||
[243] | √ | √ | √ | ||||||||||
[244] | √ | √ | |||||||||||
[245] | √ | ||||||||||||
[246] | √ | √ | |||||||||||
[247] | × | √ | √ | √ |
SI No. | Benefits | Descriptions | References |
---|---|---|---|
1 | Cost effect |
| [77] |
2 | Specialized equipment for patients |
| [255] |
3 | Metal implant of different shapes and sizes |
| [77] |
4 | 3D print model |
| [259] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdudeen, A.; Abu Qudeiri, J.E.; Kareem, A.; Valappil, A.K. Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies. J. Manuf. Mater. Process. 2022, 6, 162. https://doi.org/10.3390/jmmp6060162
Abdudeen A, Abu Qudeiri JE, Kareem A, Valappil AK. Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies. Journal of Manufacturing and Materials Processing. 2022; 6(6):162. https://doi.org/10.3390/jmmp6060162
Chicago/Turabian StyleAbdudeen, Asarudheen, Jaber E. Abu Qudeiri, Ansar Kareem, and Anasmon Koderi Valappil. 2022. "Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies" Journal of Manufacturing and Materials Processing 6, no. 6: 162. https://doi.org/10.3390/jmmp6060162
APA StyleAbdudeen, A., Abu Qudeiri, J. E., Kareem, A., & Valappil, A. K. (2022). Latest Developments and Insights of Orthopedic Implants in Biomaterials Using Additive Manufacturing Technologies. Journal of Manufacturing and Materials Processing, 6(6), 162. https://doi.org/10.3390/jmmp6060162