A Solar Trajectory Model for Multi-Spectral Image Correction of DOM from Long-Endurance UAV in Clear Sky
Abstract
:1. Introduction
2. Methodology
3. Experiments
3.1. Experimental Design
3.2. Experimental Equipment
3.3. Validation Experiments
4. Results
4.1. Comparison of CRP Reflectance Calculated by the Different Methods
4.2. Eliminating Inconsistent Incident Radiation Between Adjacent Strips
4.3. Reflectance of Typical Features
5. Discussion
5.1. Comparison of Downwelling Radiation Obtained Using the STM and DLS
5.2. Comparison of STM and Histogram Matching Method
5.3. Optimal Flight Time and Duration
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Sun, G.; Zhang, L.; Zhang, A.; Ren, J.; Jia, X.; Li, F. Three-Dimensional Singular Spectrum Analysis for Precise Land Cover Classification from UAV-Borne Hyperspectral Benchmark Datasets. ISPRS J. Photogramm. Remote Sens. 2023, 203, 115–134. [Google Scholar] [CrossRef]
- Gallo, I.G.; Martínez-Corbella, M.; Sarro, R.; Iovine, G.; López-Vinielles, J.; Hérnandez, M.; Robustelli, G.; Mateos, R.M.; García-Davalillo, J.C. An Integration of UAV-Based Photogrammetry and 3D Modelling for Rockfall Hazard Assessment: The Cárcavos Case in 2018 (Spain). Remote Sens. 2021, 13, 3450. [Google Scholar] [CrossRef]
- Yan, Q. Advantage and Application of Unmanned Aerial Vehicle Remote Sensing in Engineering Survey. Rem. Sens. 2020, 9, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Hyyppa, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [Google Scholar] [CrossRef]
- Tu, Y.-H.; Johansen, K.; Aragon, B.; Stutsel, B.M.; Angel, Y.; Camargo, O.A.L.; Al-Mashharawi, S.K.M.; Jiang, J.; Ziliani, M.G.; McCabe, M.F. Combining Nadir, Oblique, and Façade Imagery Enhances Reconstruction of Rock Formations Using Unmanned Aerial Vehicles. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9987–9999. [Google Scholar] [CrossRef]
- Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [Google Scholar] [CrossRef]
- Fakhri, A.; Latifi, H.; Samani, K.M.; Fassnacht, F.E. CaR3DMIC: A Novel Method for Evaluating UAV-Derived 3D Forest Models by Tree Features. ISPRS J. Photogramm. Remote Sens. 2024, 208, 279–295. [Google Scholar] [CrossRef]
- Skobalski, J.; Sagan, V.; Alifu, H.; Al Akkad, O.; Lopes, F.A.; Grignola, F. Bridging the Gap between Crop Breeding and GeoAI: Soybean Yield Prediction from Multispectral UAV Images with Transfer Learning. ISPRS J. Photogramm. Remote Sens. 2024, 210, 260–281. [Google Scholar] [CrossRef]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating Forest Structural Attributes Using UAV-LiDAR Data in Ginkgo Plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar] [CrossRef]
- Yue, J.; Lei, T.; Li, C.; Zhu, J. The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests. Intell. Autom. Soft Comput. 2012, 18, 1043–1052. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, C.; Yang, J.; Li, Y.; Jing, W.; Shu, S. Review on Unmanned Aerial Vehicle Remote Sensing and Its Application in Coastal Ecological Environment Monitoring. IOP Conf. Ser. Earth Environ. Sci. 2021, 821, 012018. [Google Scholar] [CrossRef]
- Brine, D.T.; Iqbal, M. Diffuse and Global Solar Spectral Irradiance under Cloudless Skies. Solar Energy 1983, 30, 447–453. [Google Scholar] [CrossRef]
- Antonanzas-Torres, F.; Urraca, R.; Polo, J.; Perpiñán-Lamigueiro, O.; Escobar, R. Clear Sky Solar Irradiance Models: A Review of Seventy Models. Renew. Sustain. Energy Rev. 2019, 107, 374–387. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Wilcox, S.M. Assessment of Spatial and Temporal Variability in the US Solar Resource from Radiometric Measurements and Predictions from Models Using Ground-Based or Satellite Data. Solar Energy 2011, 85, 1068–1084. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Mitigating Systematic Error in Topographic Models Derived from UAV and Ground-based Image Networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D Hyperspectral Information with Lightweight UAV Snapshot Cameras for Vegetation Monitoring: From Camera Calibration to Quality Assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef]
- Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Hakala, T.; Suomalainen, J.; Kaasalainen, S.; Chen, Y. Full Waveform Hyperspectral LiDAR for Terrestrial Laser Scanning. Opt. Express 2012, 20, 7119. [Google Scholar] [CrossRef]
- Burkart, A.; Cogliati, S.; Schickling, A.; Rascher, U. A Novel UAV-Based Ultra-Light Weight Spectrometer for Field Spectroscopy. IEEE Sens. J. 2014, 14, 62–67. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef]
- Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from Motion Photogrammetry in Physical Geography. Prog. Phys. Geogr. Earth Environ. 2016, 40, 247–275. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Hakala, T.; Markelin, L.; Honkavaara, E.; Scott, B.; Theocharous, T.; Nevalainen, O.; Näsi, R.; Suomalainen, J.; Viljanen, N.; Greenwell, C.; et al. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization. Sensors 2018, 18, 1417. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, Y.; Wang, X.; Luo, C.; Zhao, J.; Lei, L.; Zhang, L. SPNet: Spectral Patching End-to-End Classification Network for UAV-Borne Hyperspectral Imagery With High Spatial and Spectral Resolutions. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Peng, J.; Nieto, H.; Neumann Andersen, M.; Kørup, K.; Larsen, R.; Morel, J.; Parsons, D.; Zhou, Z.; Manevski, K. Accurate Estimates of Land Surface Energy Fluxes and Irrigation Requirements from UAV-Based Thermal and Multispectral Sensors. ISPRS J. Photogramm. Remote Sens. 2023, 198, 238–254. [Google Scholar] [CrossRef]
- Von Bueren, S.K.; Burkart, A.; Hueni, A.; Rascher, U.; Tuohy, M.P.; Yule, I.J. Deploying Four Optical UAV-Based Sensors over Grassland: Challenges and Limitations. Biogeosciences 2015, 12, 163–175. [Google Scholar] [CrossRef]
- Turkulainen, E.; Honkavaara, E.; Näsi, R.; Oliveira, R.A.; Hakala, T.; Junttila, S.; Karila, K.; Koivumäki, N.; Pelto-Arvo, M.; Tuviala, J.; et al. Comparison of Deep Neural Networks in the Classification of Bark Beetle-Induced Spruce Damage Using UAS Images. Remote Sens. 2023, 15, 4928. [Google Scholar] [CrossRef]
- Li, X.; Shang, S.; Lee, Z.; Lin, G.; Zhang, Y.; Wu, J.; Kang, Z.; Liu, X.; Yin, C.; Gao, Y. Detection and Biomass Estimation of Phaeocystis Globosa Blooms off Southern China From UAV-Based Hyperspectral Measurements. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Xie, W.; Liu, T.; Gu, Y. Intrinsic Hyperspectral Image Recovery for UAV Strips Stitching. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Hu, P.; Wang, A.; Yang, Y.; Pan, X.; Hu, X.; Chen, Y.; Kong, X.; Bao, Y.; Meng, X.; Dai, Y. Spatiotemporal Downscaling Method of Land Surface Temperature Based on Daily Change Model of Temperature. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8360–8377. [Google Scholar] [CrossRef]
- Güngör Şahin, O.; Gündüz, O. A Novel Land Surface Temperature Reconstruction Method and Its Application for Downscaling Surface Soil Moisture with Machine Learning. J. Hydrol. 2024, 634, 131051. [Google Scholar] [CrossRef]
- Mukherjee, F.; Singh, D. Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Syst Env. 2020, 4, 385–407. [Google Scholar] [CrossRef]
- Köppl, C.J.; Malureanu, R.; Dam-Hansen, C.; Wang, S.; Jin, H.; Barchiesi, S.; Serrano Sandí, J.M.; Muñoz-Carpena, R.; Johnson, M.; Durán-Quesada, A.M.; et al. Hyperspectral Reflectance Measurements from UAS under Intermittent Clouds: Correcting Irradiance Measurements for Sensor Tilt. Remote Sens. Environ. 2021, 267, 112719. [Google Scholar] [CrossRef]
- Zhao, M.; Li, W.; Li, L.; Wang, A.; Hu, J.; Tao, R. Infrared Small UAV Target Detection via Isolation Forest. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–16. [Google Scholar] [CrossRef]
- Fang, H.; Ding, L.; Wang, X.; Chang, Y.; Yan, L.; Liu, L.; Fang, J. SCINet: Spatial and Contrast Interactive Super-Resolution Assisted Infrared UAV Target Detection. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–22. [Google Scholar] [CrossRef]
- Suomalainen, J.; Hakala, T.; Alves De Oliveira, R.; Markelin, L.; Viljanen, N.; Näsi, R.; Honkavaara, E. A Novel Tilt Correction Technique for Irradiance Sensors and Spectrometers On-Board Unmanned Aerial Vehicles. Remote Sens. 2018, 10, 2068. [Google Scholar] [CrossRef]
- Yang, S.; Kang, R.; Xu, T.; Guo, J.; Deng, C.; Zhang, L.; Si, L.; Kaufmann, H.J. Improving Satellite-Based Retrieval of Maize Leaf Chlorophyll Content by Joint Observation with UAV Hyperspectral Data. Drones 2024, 8, 783. [Google Scholar] [CrossRef]
- Gao, P.; Wu, T.; Song, C. Cloud–Edge Collaborative Strategy for Insulator Recognition and Defect Detection Model Using Drone-Captured Images. Drones 2024, 8, 779. [Google Scholar] [CrossRef]
- Daniels, L.; Eeckhout, E.; Wieme, J.; Dejaegher, Y.; Audenaert, K.; Maes, W.H. Identifying the Optimal Radiometric Calibration Method for UAV-Based Multispectral Imaging. Remote Sens. 2023, 15, 2909. [Google Scholar] [CrossRef]
- Johansen, K.; Duan, Q.; Tu, Y.-H.; Searle, C.; Wu, D.; Phinn, S.; Robson, A.; McCabe, M.F. Mapping the Condition of Macadamia Tree Crops Using Multi-Spectral UAV and WorldView-3 Imagery. ISPRS J. Photogramm. Remote Sens. 2020, 165, 28–40. [Google Scholar] [CrossRef]
- Gruszczyński, W.; Puniach, E.; Ćwiąkała, P.; Matwij, W. Application of Convolutional Neural Networks for Low Vegetation Filtering from Data Acquired by UAVs. ISPRS J. Photogramm. Remote Sens. 2019, 158, 1–10. [Google Scholar] [CrossRef]
- Grando, L.; Jaramillo, J.F.G.; Leite, J.R.E.; Ursini, E.L. Systematic Literature Review Methodology for Drone Recharging Processes in Agriculture and Disaster Management. Drones 2025, 9, 40. [Google Scholar] [CrossRef]
- Marcello, J.; Spínola, M.; Albors, L.; Marqués, F.; Rodríguez-Esparragón, D.; Eugenio, F. Performance of Individual Tree Segmentation Algorithms in Forest Ecosystems Using UAV LiDAR Data. Drones 2024, 8, 772. [Google Scholar] [CrossRef]
- Savinelli, B.; Tagliabue, G.; Vignali, L.; Garzonio, R.; Gentili, R.; Panigada, C.; Rossini, M. Integrating Drone-Based LiDAR and Multispectral Data for Tree Monitoring. Drones 2024, 8, 744. [Google Scholar] [CrossRef]
- Fu, H.; Zhou, T.; Sun, C. Object-Based Shadow Index via Illumination Intensity from High Resolution Satellite Images over Urban Areas. Sensors 2020, 20, 1077. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. Technical Note: The libRadtran Software Package for Radiative Transfer Calculations—Description and Examples of Use. Atmos. Chem. Phys. 2005, 26, 1855–1877. [Google Scholar]
- Van Genderen, J.L. Advances in Environmental Remote Sensing: Sensors, Algorithms, and Applications. Int. J. Digit. Earth 2011, 4, 446–447. [Google Scholar] [CrossRef]
Shanghai Experiment | Tianjin Experiment | |
---|---|---|
Area (km2) | 0.14 | 1.27 |
Flight Overlap Rate (%) | 80 | 85 |
Sidelap Rate (%) | 75 | 80 |
Flight Altitude (m) | 110 | 230 |
Method | Number of Images | Average Processing Time (s) | Peak Memory Usage (MB) |
---|---|---|---|
Traditional Method | 1 | 2.4 | 4.8 |
100 | 4942.5 | 4.9 | |
DLS Method | 1 | 1.8 | 7.8 |
100 | 6867.4 | 10.1 | |
STM | 1 | 1.3 | 3.5 |
100 | 4536.7 | 3.5 |
Green | Red | Red Edge | NIR | Panchromatic | ||
---|---|---|---|---|---|---|
green vegetation | Traditional | 26 | 5 | 35 | 41 | 34 |
STM | 32 | 8 | 45 | 50 | 45 | |
DLS | 43 | 15 | 52 | 58 | 54 | |
ASD | 35 | 9 | 47 | 52 | 47 | |
red tiles | Traditional | 9 | 25 | 36 | 29 | 38 |
STM | 15 | 30 | 40 | 35 | 38 | |
DLS | 32 | 45 | 57 | 49 | 56 | |
ASD | 16 | 32 | 43 | 38 | 41 | |
concrete ground | Traditional | 16 | 38 | 41 | 53 | 45 |
STM | 21 | 43 | 45 | 54 | 49 | |
DLS | 22 | 32 | 42 | 54 | 48 | |
ASD | 23 | 45 | 48 | 61 | 56 | |
yellow vegetation | Traditional | 12 | 51 | 32 | 49 | 51 |
STM | 23 | 58 | 34 | 57 | 54 | |
DLS | 45 | 109 | 78 | 96 | 113 | |
ASD | 22 | 61 | 40 | 59 | 61 | |
black tiles | Traditional | 7 | 9 | 14 | 10 | 11 |
STM | 12 | 15 | 24 | 17 | 16 | |
DLS | 12 | 15 | 23 | 26 | 31 | |
ASD | 14 | 17 | 26 | 21 | 20 | |
rivers and lakes | Traditional | 9 | 7 | 12 | 9 | 4 |
STM | 15 | 9 | 16 | 11 | 9 | |
DLS | 25 | 15 | 22 | 15 | 16 | |
ASD | 17 | 10 | 18 | 13 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Nie, K.; Lu, X.; Fan, W.; Zhang, S.; Wang, F. A Solar Trajectory Model for Multi-Spectral Image Correction of DOM from Long-Endurance UAV in Clear Sky. Drones 2025, 9, 196. https://doi.org/10.3390/drones9030196
Wu S, Nie K, Lu X, Fan W, Zhang S, Wang F. A Solar Trajectory Model for Multi-Spectral Image Correction of DOM from Long-Endurance UAV in Clear Sky. Drones. 2025; 9(3):196. https://doi.org/10.3390/drones9030196
Chicago/Turabian StyleWu, Siyao, Ke Nie, Xia Lu, Wei Fan, Shengmao Zhang, and Fei Wang. 2025. "A Solar Trajectory Model for Multi-Spectral Image Correction of DOM from Long-Endurance UAV in Clear Sky" Drones 9, no. 3: 196. https://doi.org/10.3390/drones9030196
APA StyleWu, S., Nie, K., Lu, X., Fan, W., Zhang, S., & Wang, F. (2025). A Solar Trajectory Model for Multi-Spectral Image Correction of DOM from Long-Endurance UAV in Clear Sky. Drones, 9(3), 196. https://doi.org/10.3390/drones9030196