Efficient Coupling of Urban Wind Fields and Drone Flight Dynamics Using Convolutional Autoencoders
Highlights
- Two-dimensional convolutional autoencoders compress LES-based urban wind fields by 91% while maintaining high reconstruction fidelity.
- CAE-reconstructed wind fields yield flight dynamics predictions for a subscale Cessna that closely match those obtained with the original LES winds.
- Reduced storage and memory requirements enable larger urban wind domains to be used in real-time flight dynamics simulations.
- Compressed wind-field representations facilitate efficient sharing and reuse of disturbance models in collaborative AAM studies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Simulink-Based Simulation Environment
- Wind Field Modeling
- Aerodynamic Force and Moment Generation
- Integration Scheme to Update Drone States
- Control Laws for Desired Maneuvers
2.2. Wind Field Modeling
2.2.1. LES-Generated Wind Fields
2.2.2. Convolutional Autoencoder Algorithm
2.3. Aerodynamic Force and Moment Generation
2.3.1. Compact Vortex Lattice
2.3.2. Flight Derived State Space Model
2.3.3. Four-Point Method
2.4. Integration Scheme to Update Drone States
2.5. Control Laws for Desired Maneuvers
3. Results
3.1. CAE Hyperparameter Study
3.2. Machine Learning Wind Field Representation
3.3. Flight Dynamics Results
4. Conclusions
5. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Parameter | Value |
|---|---|
| Servo Roll PID | |
| P | 0.203 |
| I | 0.153 |
| D | 0.007 |
| INT_MAX | 0.0066 |
| Servo Pitch PID | |
| P | 1.471 |
| I | 1.103 |
| D | 0.040 |
| INT_MAX | 0.0066 |
| Servo Yaw | |
| P | 1.000 |
| I | 0.500 |
| D | 0.500 |
| INT_Max | 15.0 |
| L1 Control—Turn Control | |
| Period | 40 |
| Damping | 0.75 |
| TECS | |
| Climb Max (m/s) | 5.0 |
| Sink Min (m/s) | 2.0 |
| Sink Max (m/s) | 5.0 |
| Pitch Dampening | 0.3 |
| Time Const | 5.0 |
References
- Faithfull, M. Walmart Drone Dream Has Been Cleared For Take Off In Dallas. Available online: https://www.forbes.com/sites/markfaithfull/2024/05/13/walmart-drone-dream-has-been-cleared-for-take-off-in-dallas/ (accessed on 10 January 2024).
- Patterson, M. Advanced Air Mobility (AAM): An Overview and Brief History. In Proceedings of the SU Transportation Engineering and Safety Conference, Online, 8–10 December 2021. [Google Scholar]
- Johnson, W.; Silva, C. NASA concept vehicles and the engineering of advanced air mobility aircraft. Aeronaut. J. 2022, 126, 59–91. [Google Scholar] [CrossRef]
- Goyal, R.; Reiche, C.; Fernando, C.; Cohen, A. Advanced air mobility: Demand analysis and market potential of the airport shuttle and air taxi markets. Sustainability 2021, 13, 7421. [Google Scholar] [CrossRef]
- Goyal, R.; Cohen, A. Advanced air mobility: Opportunities and challenges deploying eVTOLs for air ambulance service. Appl. Sci. 2022, 12, 1183. [Google Scholar] [CrossRef]
- Nithya, D.; Quaranta, G.; Muscarello, V.; Liang, M. Review of wind flow modelling in urban environments to support the development of urban air mobility. Drones 2024, 8, 147. [Google Scholar] [CrossRef]
- Connors, M.M. Understanding Risk in Urban air Mobility: Moving Towards Safe Operating Standards. 2020. Available online: https://ntrs.nasa.gov/api/citations/20205000604/downloads/NASA%20TM20205000604.pdf (accessed on 10 August 2025).
- Ranquist, E.; Steiner, M.; Argrow, B. Exploring the Range of Weather Impacts on UAS Operations. In Proceedings of the 18th Conference on Aviation, Range and Aerospace Meteorology, Seattle, WA, USA, 22–26 January 2017. [Google Scholar]
- Micallef, D.; Van Bussel, G. A review of urban wind energy research: Aerodynamics and other challenges. Energies 2018, 11, 2204. [Google Scholar] [CrossRef]
- Krawczyk, Z.; Vuppala, R.K.; Paul, R.; Kara, K. Evaluating Reduced-Order Urban Wind Models for Simulating Flight Dynamics of Advanced Aerial Mobility Aircraft. Aerospace 2024, 11, 830. [Google Scholar] [CrossRef]
- Corbetta, M.; Jarvis, K.; Banerjee, P. Uncertainty propagation in pre-flight prediction of unmanned aerial vehicle separation violations. In Proceedings of the 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–11. [Google Scholar]
- Banerjee, P.; Bradner, K. Energy-Optimized Path Planning for Uas in Varying Winds Via Reinforcement Learning. In Proceedings of the AIAA Aviation Forum and ASCEND 2024, Las Vegas, NV, USA, 29 July–2 August 2024; p. 4545. [Google Scholar]
- Moore, A.J.; Young, S.; Altamirano, G.; Ancel, E.; Darafsheh, K.; Dill, E.; Foster, J.; Quach, C.; Mackenzie, A.; Matt, J.; et al. Testing of Advanced Capabilities to Enable In-Time Safety Management and Assurance for Future Flight Operations. 2024. Available online: https://ntrs.nasa.gov/api/citations/20230018665/downloads/NASA-TM-20230018665.pdf (accessed on 10 August 2025).
- Vita, G.; Shu, Z.; Jesson, M.; Quinn, A.; Hemida, H.; Sterling, M.; Baker, C. On the assessment of pedestrian distress in urban winds. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104200. [Google Scholar] [CrossRef]
- Shirzadi, M.; Tominaga, Y. CFD evaluation of mean and turbulent wind characteristics around a high-rise building affected by its surroundings. Build. Environ. 2022, 225, 109637. [Google Scholar] [CrossRef]
- Krawczyk, Z.; Vuppala, R.K.; Paul, R.; Kara, K. Urban Wind Field Effects on the Flight Dynamics of Fixed-Wing Drones. Drones 2025, 9, 362. [Google Scholar] [CrossRef]
- Masoumi-Verki, S.; Haghighat, F.; Eicker, U. A review of advances towards efficient reduced-order models (ROM) for predicting urban airflow and pollutant dispersion. Build. Environ. 2022, 216, 108966. [Google Scholar] [CrossRef]
- Caron, C.; Lauret, P.; Bastide, A. Machine Learning to speed up Computational Fluid Dynamics engineering simulations for built environments: A review. Build. Environ. 2025, 267, 112229. [Google Scholar] [CrossRef]
- Clemente, A.V.; Giljarhus, K.E.T.; Oggiano, L.; Ruocco, M. Configurable convolutional neural networks for real-time pedestrian-level wind prediction in urban environments. arXiv 2023, arXiv:2311.07985. [Google Scholar]
- Masoumi-Verki, S.; Haghighat, F.; Eicker, U. Improving the performance of a CAE-based reduced-order model for predicting turbulent airflow field around an isolated high-rise building. Sustain. Cities Soc. 2022, 87, 104252. [Google Scholar] [CrossRef]
- Xiang, S.; Fu, X.; Zhou, J.; Wang, Y.; Zhang, Y.; Hu, X.; Xu, J.; Liu, H.; Liu, J.; Ma, J.; et al. Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Build. Environ. 2021, 187, 107397. [Google Scholar] [CrossRef]
- Fu, R.; Xiao, D.; Navon, I.; Wang, C. A data driven reduced order model of fluid flow by auto-encoder and self-attention deep learning methods. arXiv 2021, arXiv:2109.02126. [Google Scholar]
- Mücke, N.T.; Bohté, S.M.; Oosterlee, C.W. Reduced order modeling for parameterized time-dependent PDEs using spatially and memory aware deep learning. J. Comput. Sci. 2021, 53, 101408. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Balajewicz, M. Deep convolutional recurrent autoencoders for learning low-dimensional feature dynamics of fluid systems. arXiv 2018, arXiv:1808.01346. [Google Scholar] [CrossRef]
- Hasegawa, K.; Fukami, K.; Murata, T.; Fukagata, K. CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers. Fluid Dyn. Res. 2020, 52, 065501. [Google Scholar] [CrossRef]
- Eivazi, H.; Veisi, H.; Naderi, M.H.; Esfahanian, V. Deep neural networks for nonlinear model order reduction of unsteady flows. Phys. Fluids 2020, 32, 105104. [Google Scholar] [CrossRef]
- Beard, R.W.; McLain, T.W. Small Unmanned Aircraft: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Jasak, H.; Jemcov, A.; Tukovic, Z. OpenFOAM: A C++ library for complex physics simulations. In Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics, IUC Dubrovnik, Croatia, 19–21 September 2007; Volume 1000, pp. 1–20. [Google Scholar]
- Vuppala, R.K.; Krawczyk, Z.; Paul, R.; Kara, K. Modeling advanced air mobility aircraft in data-driven reduced order realistic urban winds. Sci. Rep. 2024, 14, 383. [Google Scholar] [CrossRef]
- Xiang, S.; Zhou, J.; Fu, X.; Zheng, L.; Wang, Y.; Zhang, Y.; Yi, K.; Liu, J.; Ma, J.; Tao, S. Fast simulation of high resolution urban wind fields at city scale. Urban Clim. 2021, 39, 100941. [Google Scholar] [CrossRef]
- Simmons, B.M.; Gresham, J.L.; Woolsey, C.A. Nonlinear dynamic modeling for aircraft with unknown mass properties using flight data. J. Aircr. 2023, 60, 968–980. [Google Scholar] [CrossRef]
- Bunge, R.; Kroo, I. Compact formulation of nonlinear inviscid aerodynamics for fixed-wing aircraft. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012; p. 2771. [Google Scholar]
- Morelli, E.A.; Klein, V. Aircraft System Identification: Theory and Practice; Sunflyte Enterprises: Williamsburg, VA, USA, 2016; Volume 2. [Google Scholar]
- Mohamed, A.; Marino, M.; Watkins, S.; Jaworski, J.; Jones, A. Gusts encountered by flying vehicles in proximity to buildings. Drones 2023, 7, 22. [Google Scholar] [CrossRef]
- Etkin, B. Dynamics of Atmospheric Flight; Courier Corporation: North Chelmsford, MA, USA, 2005. [Google Scholar]
- Galway, D.; Etele, J.; Fusina, G. Development and implementation of an urban wind field database for aircraft flight simulation. J. Wind Eng. Ind. Aerodyn. 2012, 103, 73–85. [Google Scholar] [CrossRef]
- Cybyk, B.Z.; McGrath, B.E.; Frey, T.M.; Drewry, D.G.; Keane, J.F.; Patnaik, G. Unsteady airflows and their impact on small unmanned air systems in urban environments. J. Aerosp. Inf. Syst. 2014, 11, 178–194. [Google Scholar] [CrossRef]
- ArduPilot: Github. 2024. Available online: https://github.com/ArduPilot/ardupilot (accessed on 10 August 2025).
- Eddy, W.; Mathis, M.; Duke, M. Transmission Control Protocol (TCP) Specification. Request for Comments 9293. 2022. Available online: https://www.ietf.org/rfc/rfc9293.html#name-purpose-and-scope (accessed on 2 December 2024).
- Schulze, P.C.; Miller, J.; Klyde, D.H.; Regan, C.D.; Alexandrov, N. System identification of a small UAS in support of handling qualities evaluations. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0826. [Google Scholar]
- Park, S. Modeling with vortex lattice method and frequency sweep flight test for a fixed-wing UAV. Control Eng. Pract. 2013, 21, 1767–1775. [Google Scholar] [CrossRef]












| Component Specifications |
|---|
| CPU: Intel i9-13900KF |
| GPU: Nvidia RTX 4090 |
| RAM: 32 GB DDR5 |
| Hyperparameter | Type | Description |
|---|---|---|
| input_size | Tuple(287,350) | Spatial dimensions of the input field , e.g., . |
| latent_dim | Integer(512) | Dimension of the latent vector z after the encoder fully flattens features. Controls compression strength. |
| num_layers | Integer(4) | Number of convolutional layers in both encoder and decoder. Must be ≥1. |
| batch_norm | Boolean(1) | Enable/disable BatchNorm2d after each convolution layer. |
| max_pool | Boolean(0) | If true, uses stride = 1 convolutions + MaxPool(2). If false, uses stride = 2 convs for downsampling. |
| base_channels | List[int] | The number of feature maps progression: [32, 64, 128, 256, 512, 1024]. |
| kernel_size | Integer(3) | Kernel size for all Conv2d and ConvTranspose2d layers. |
| stride | Integer(2) | Stride = 2 when downsampling without max pooling; stride = 1 when max pooling is used. |
| negative_slope | Float(−0.2) | Slope of the LeakyReLU activation function. |
| Property | Value |
|---|---|
| Wing Airfoil | NACA 2412 |
| V-Tail & H-Tail Airfoil | NACA 0012 |
| Cruise Airspeed | 28 m/s |
| Mass | 4.91 kg |
| CG from Leading Edge | (0.135, 0.0, 0.0) m |
| 0.55 kgm2 | |
| 0.43 kgm2 | |
| 0.80 kgm2 | |
| 0.07 kgm2 | |
| S | 0.68 m2 |
| 0.32 m | |
| b | 2.12 m |
| 0.8 m |
| Elevator | Aileron | Rudder |
|---|---|---|
| CAE | MS-CAE | |
|---|---|---|
| w-mse | 8.04 | 5.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk, Z.; Paul, R.; Kara, K. Efficient Coupling of Urban Wind Fields and Drone Flight Dynamics Using Convolutional Autoencoders. Drones 2025, 9, 802. https://doi.org/10.3390/drones9110802
Krawczyk Z, Paul R, Kara K. Efficient Coupling of Urban Wind Fields and Drone Flight Dynamics Using Convolutional Autoencoders. Drones. 2025; 9(11):802. https://doi.org/10.3390/drones9110802
Chicago/Turabian StyleKrawczyk, Zack, Ryan Paul, and Kursat Kara. 2025. "Efficient Coupling of Urban Wind Fields and Drone Flight Dynamics Using Convolutional Autoencoders" Drones 9, no. 11: 802. https://doi.org/10.3390/drones9110802
APA StyleKrawczyk, Z., Paul, R., & Kara, K. (2025). Efficient Coupling of Urban Wind Fields and Drone Flight Dynamics Using Convolutional Autoencoders. Drones, 9(11), 802. https://doi.org/10.3390/drones9110802

