Urban Dimension of U-Space: Local Planning Considerations for Drone Integration
Highlights
- Identified a core planning conflict between permissive airspace usage and retaining area functions.
- Highlighted potential legitimacy issues from insufficient consideration of local political and civil society interests.
- Strengthening the role of regional and local authorities in the multi-level governance for U-Space.
- Investing early in stakeholder participation formats, guaranteeing transparency and adequate responsiveness to citizens’ concerns.
Abstract
1. Introduction
- What are the public concerns and strategic interests of municipalities regarding U-Space?
- What capacities are required for effective municipal participation in the designation and management of U-Space airspaces?
- How can municipal public concerns and strategic interests be effectively incorporated into U-Space multi-level governance frameworks?
2. Background: European U-Space
2.1. U-Space Stakeholder
2.2. U-Space Infrastructures and Sustainable Urban Development
2.3. U-Space Multi-Level Governance
- Is designating a U-Space airspace necessary for drone operations to ensure safety, privacy, and environmental protection in the area?
- Within what boundaries should the geographical volume be designated?
- What interests and concerns must be considered when designating the airspace?
- What operational and technical airspace restrictions should be established?
- Which services, beyond the four basic services, must USSPs provide?
3. Materials and Methods
3.1. Framework Conditions of the Case Study
3.2. UAM Strategy Workshop
3.3. Authority Enquiry on U-Space
3.4. U-Space Planning Workshop
4. Results
4.1. Municipal Strategic Interests
4.2. Challenges Regarding UAM and U-Space
4.3. Affected Public Concerns from Operations
- Maintaining public order and security, referring to risks stemming from illegal drone usage, cybersecurity threats, accidents, breaches of spatial security (e.g., of police stations, administration buildings, or critical infrastructure), and the protection of private rights (e.g., privacy of pupils and teachers);
- Protection of the area function, including the conservation of culturally, socially, and environmentally sensitive areas from visual disturbance or noise exposure, including the protection of wildlife.
4.4. Local Approaches for Urban Airspace Planning
- Special coordination and approval requirements, either completely or during specific periods (e.g., the breeding season of endangered animals);
- Requirements that vary depending on the UAS’s purpose (e.g., greater operational freedom may be granted for humanitarian uses);
- Restrictions based on the type of UAS flight maneuver (overflight versus location-based), with overflight maneuvers considered less disturbing;
- Limitations based on the duration and intensity of UAS activity in the area (including the definition of thresholds).
4.5. Managing Requirements in the Designation Phase
4.6. Managing Requirements in the Execution Phase
4.7. Summary of Results
5. Discussion
5.1. Local Economic Growth and Cost-Benefit Distribution
5.2. Public Service Provision and Capacity Building
5.3. National Law and Local Steering Competencies
5.4. Urban Planning and Market Based Instruments
5.5. Stakeholder Participation for U-Space Planning
5.6. Public Engagement Formats
5.7. Transparency and Responsiveness in U-Space Management
6. Conclusions: Towards City-Centric U-Space Planning
- Establishing mechanisms that counter the functional equivalent of an ‘Unfunded Mandate’. This includes defining local value creation frameworks to secure economic returns from U-Space and pathways to mitigate the risk of data extractivism and the unfair sharing of public costs and private benefits. Furthermore, providing higher-level funding to co-finance local administrative capacity (e.g., dedicated drone units) may serve as an incentive to ensure the municipality’s buy-in.
- Strengthening the role of regional and local authorities in the multi-level governance for U-Space, specifically by developing competence in three-dimensional spatial planning and by providing legal and planning tools that allow for context-specific regulations to align the benefits of UAM and U-Space with public interests and local development goals.
- Conducting legal reviews of existing urban planning instruments (e.g., defining building regulations for take-off/landing sites) and market-based instruments (e.g., variable pricing schemes) for their applicability. This also necessitates critically assessing the contractual relationship between municipalities and USSPs.
- Investing early in stakeholder participation formats, aiming for the identification and adequate representation of concerns and interests to prevent societal and political conflicts, thereby improving the planning quality of U-Space.
- Guaranteeing transparency and adequate responsiveness to citizens’ concerns through centralized accountability tools provided to the local level as part of ongoing UTMS capacity improvements. This includes establishing a public information system with drone flight radars and a central complaint management system.
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMC | Acceptable Means of Compliance |
| ANSP | Air navigation service providers |
| BVLOS | Beyond Visual Line of Sight |
| BWI | Hamburg Ministry of Economics and Innovation |
| CISP | Common Information Service Provider |
| EASA | European Union Aviation Safety Agency |
| GM | Guidance Materials |
| LuftVO | German National Air Traffic Ordinance |
| UAM | Urban Air Mobility |
| UAS | Uncrewed Aircraft System |
| UIC2 | Urban Air Mobility Initiative Cities Community |
| U-Space CIR | European Commission Implementing Regulation (EU) 2021/664 |
| USSP | U-Space Service Provider |
| UTMS | Uncrewed Traffic Management System |
| VTOL | Vertical take-off and landing aircraft |
References
- SESAR Joint Undertaking. European ATM Master Plan—Roadmap for the Safe Integration of Drones into All Classes of Airspace; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2019/947 of 24 May 2019 on the Rules and Procedures for the Operation of Unmanned Aircraft; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Lavallée, C.; Martins, B.O. Reframing Civil–Military Relations in the EU: Insights from the Drone Strategy 2.0. J. Common Mark. Stud. 2024, 62, 619–625. [Google Scholar] [CrossRef]
- Stępniak, M.; Cheimariotis, I.; Lodi, C.; Rataj, M.; Zawieska, J.; Grosso, M.; Marotta, A. Research and Innovation on Drones in Europe: An Assessment Based on the Transport Research and Innovation Monitoring and Information System (TRIMIS); Publications Office of the European Union: Luxembourg, 2024; ISBN 978-92-68-14342-1. [Google Scholar]
- European Commission. EU Drone Sector State of Play; European Commission: Brussels, Belgium, 2022; p. 86. [Google Scholar]
- Raghunatha, A.; Thollander, P.; Barthel, S. Addressing the Emergence of Drones—A Policy Development Framework for Regional Drone Transportation Systems. Transp. Res. Interdiscip. Perspect. 2023, 18, 100795. [Google Scholar] [CrossRef]
- Sky Limits. Delivery Drones and Air Taxis in Cities? Twelve Research-Based Recommendations for Handling Future Traffic in Lower Airspace; Sky Limits: Berlin, Germany, 2021. [Google Scholar]
- City of Helsinki. Study on the Future of Helsinki’s Urban Air Mobility; Economic Development Department: Helsinki, Finland, 2023. [Google Scholar]
- Hamburg Behörde für Wirtschaft und Innovation. Einsatz von Drohnen. Hamburgs Aktivitäten und Zielsetzungen der BWI; Behörde für Wirtschaft und Innovation, Abteilung Luftverkehr, Norddeutsche Zusammenarbeit und MetropolregionFreie und Hansestadt Hamburg: Hamburg, Germany, 2023; p. 16. [Google Scholar]
- Smart Dublin. Accelerating the Potential of Drones for Local Government. International Best and Emerging Practice Report; Smart Dublin: Dublin, Ireland, 2022. [Google Scholar]
- Liesbet, H.; Gary, M. Unraveling the Central State, but How? Types of Multi-Level Governance. Am. Pol. Sci. Rev. 2003, 97, 233–243. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2021/664 of 22 April 2021 on a Regulatory Framework for the U-Space; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Rhodes, R.A.W. The New Governance: Governing without Government. Political Stud. 1996, 44, 652–667. [Google Scholar] [CrossRef]
- Kellermann, R.; Biehle, T.; Fischer, L. Drones for Parcel and Passenger Transportation: A Literature Review. Transp. Res. Interdiscip. Perspect. 2020, 4, 100088. [Google Scholar] [CrossRef]
- European Aviation Safety Agency. Acceptable Means of Compliance and Guidance Material to Regulation (EU) 2021/664 on a Regulatory Framework for the U-Space; European Aviation Safety Agency: Cologne, Germany, 2022. [Google Scholar]
- Kitonsa, H.; Kruglikov, S.V. Significance of Drone Technology for Achievement of the United Nations Sustainable Development Goals. R-Econ. 2018, 4, 115–120. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- Greenwood, W.W.; Lynch, J.P.; Zekkos, D. Applications of UAVs in Civil Infrastructure. J. Infrastruct. Syst. 2019, 25, 04019002. [Google Scholar] [CrossRef]
- Hajjaj, S.S.H.; Moktar, M.H.; Weng, L.Y. Review of Implementing the Internet of Things (IoT) for Robotic Drones (IoT Drones). E3S Web Conf. 2024, 477, 00016. [Google Scholar] [CrossRef]
- Jazairy, A.; Persson, E.; Brho, M.; Von Haartman, R.; Hilletofth, P. Drones in Last-Mile Delivery: A Systematic Literature Review from a Logistics Management Perspective. Int. J. Logist. Manag. 2025, 36, 1–62. [Google Scholar] [CrossRef]
- Lemardelé, C.; Estrada, M.; Pagès, L.; Bachofner, M. Potentialities of Drones and Ground Autonomous Delivery Devices for Last-Mile Logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 149, 102325. [Google Scholar] [CrossRef]
- Zrelli, I.; Rejeb, A.; Abusulaiman, R.; AlSahafi, R.; Rejeb, K.; Iranmanesh, M. Drone Applications in Logistics and Supply Chain Management: A Systematic Review Using Latent Dirichlet Allocation. Arab. J. Sci. Eng. 2024, 49, 12411–12430. [Google Scholar] [CrossRef]
- Coppola, P.; De Fabiis, F.; Silvestri, F. Urban Air Mobility (UAM): Airport Shuttles or City-Taxis? Transp. Policy 2024, 150, 24–34. [Google Scholar] [CrossRef]
- Riza, L.; Bruehl, R.; Fricke, H.; Planing, P. Will Air Taxis Extend Public Transportation? A Scenario-Based Approach on User Acceptance in Different Urban Settings. Transp. Res. Interdiscip. Perspect. 2024, 23, 101001. [Google Scholar] [CrossRef]
- Suo, Y.; Li, C.; Tang, L.; Huang, L. Exploring AAM Acceptance in Tourism: Environmental Consciousness’s Influence on Hedonic Motivation and Intention to Use. Sustainability 2024, 16, 3324. [Google Scholar] [CrossRef]
- Syd Ali, B. Traffic Management for Drones Flying in the City. Int. J. Crit. Infrastruct. Prot. 2019, 26, 100310. [Google Scholar] [CrossRef]
- Barrado, C.; Boyero, M.; Brucculeri, L.; Ferrara, G.; Hately, A.; Hullah, P.; Martin-Marrero, D.; Pastor, E.; Rushton, A.P.; Volkert, A. U-Space Concept of Operations: A Key Enabler for Opening Airspace to Emerging Low-Altitude Operations. Aerospace 2020, 7, 24. [Google Scholar] [CrossRef]
- SESAR Joint Undertaking. U-Space Concept of Operations (ConOPs): Fourth Edition.; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for Sustainable Development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- European Commission. A Drone Strategy 2.0 for a Smart and Sustainable Unmanned Aircraft Eco-System in Europe; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- McKinsey & Company. Parcel Delivery: The Future of Last Mile; McKinsey & Company: New York, NY, USA, 2016. [Google Scholar]
- Applin, S.A. Deliveries by Drone: Obstacles and Sociability. In The Future of Drone Use; Custers, B., Ed.; T.M.C. Asser Press: The Hague, The Netherlands, 2016; Volume 27, pp. 71–91. ISBN 978-94-6265-131-9. [Google Scholar]
- McKinsey & Company. Commercial Drone Deliveries Are Demonstrating Continued Momentum in 2023. In Back to Future Air Mobility; McKinsey & Company: New York, NY, USA, 2023. [Google Scholar]
- Henao, A.; Marshall, W.E. The Impact of Ride-Hailing on Vehicle Miles Traveled. Transportation 2019, 46, 2173–2194. [Google Scholar] [CrossRef]
- Straubinger, A. Will Urban Air Mobility Fly? The Efficiency and Distributional Impacts of UAM in Different Urban Spatial Structures. Transp. Res. Part C Emerg. Technol. 2021, 127, 103124. [Google Scholar] [CrossRef]
- Straubinger, A. The Long-Run Effects of Urban Air Mobility—An Urban Spatial Equilibrium Assessment. Ph.D. Thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Straubinger, A.; De Groot, H.L.F.; Verhoef, E.T. E-Commerce, Delivery Drones and Their Impact on Cities. Transp. Res. Part A Policy Pract. 2023, 178, 103841. [Google Scholar] [CrossRef]
- Biehle, T. Social Sustainable Urban Air Mobility in Europe. Sustainability 2022, 14, 9312. [Google Scholar] [CrossRef]
- Krstić Simić, T.; Ganić, E.; Mirković, B.; Baena, M.; LeGriffon, I.; Barrado, C. U-Space Social and Environmental Performance Indicators. Drones 2024, 8, 580. [Google Scholar] [CrossRef]
- Aurambout, J.-P.; Gkoumas, K.; Ciuffo, B. Last Mile Delivery by Drones: An Estimation of Viable Market Potential and Access to Citizens across European Cities. Eur. Transp. Res. Rev. 2019, 11, 30. [Google Scholar] [CrossRef]
- Goyal, R.; Reiche, C.; Fernando, C.; Cohen, A. Advanced Air Mobility: Demand Analysis and Market Potential of the Airport Shuttle and Air Taxi Markets. Sustainability 2021, 13, 7421. [Google Scholar] [CrossRef]
- Ploetner, K.O.; Al Haddad, C.; Antoniou, C.; Frank, F.; Fu, M.; Kabel, S.; Llorca, C.; Moeckel, R.; Moreno, A.T.; Pukhova, A.; et al. Long-Term Application Potential of Urban Air Mobility Complementing Public Transport: An Upper Bavaria Example. CEAS Aeronaut. J. 2020, 11, 991–1007. [Google Scholar] [CrossRef]
- Kellermann, R.; Biehle, T.; Mostofi, H. Modelling Public Attitude towards Drone Delivery in Germany. Eur. Transp. Res. Rev. 2023, 15, 38. [Google Scholar] [CrossRef]
- Mostofi, H.; Biehle, T.; Kellermann, R.; Dienel, H.-L. Modelling Public Attitude towards Air Taxis in Germany. Transp. Res. Interdiscip. Perspect. 2024, 24, 101045. [Google Scholar] [CrossRef]
- Banister, D. The Sustainable Mobility Paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Dia, H. Four Strategies for Reducing Urban Transport Emissions and Improving Health: Avoid, Shift, Share and Improve. J. Transp. Health 2019, 14, 100683. [Google Scholar] [CrossRef]
- Mitchell, S.; Steinbach, J.; Flanagan, T.; Ghabezi, P.; Harrison, N.; O’Reilly, S.; Killian, S.; Finnegan, W. Evaluating the Sustainability of Lightweight Drones for Delivery: Towards a Suitable Methodology for Assessment. Funct. Compos. Mater. 2023, 4, 4. [Google Scholar] [CrossRef]
- Hu, B.; Brandstätter, G.; Müller, J.; Stern, P.; Schaffenberger, A.; Fallast, A.; Lesak, S.; Meinhard, D. Assessing Automated Air-Taxis for Urban Mobility. Eur. Transp. Res. Rev. 2024, 16, 37. [Google Scholar] [CrossRef]
- Kirschstein, T. Comparison of Energy Demands of Drone-Based and Ground-Based Parcel Delivery Services. Transp. Res. Part D Transp. Environ. 2020, 78, 102209. [Google Scholar] [CrossRef]
- Stolaroff, J.K.; Samaras, C.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy Use and Life Cycle Greenhouse Gas Emissions of Drones for Commercial Package Delivery. Nat. Commun. 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Fraske, T. The Agency and Geography of Socio-Technical Transitions: The Case of Urban Transport Innovations; Christian-Albrechts University Kiel, Faculties, Faculty of Mathematics and Natural Sciences: Kiel, Germany, 2023. [Google Scholar]
- Sengers, F.; Wieczorek, A.J.; Raven, R. Experimenting for Sustainability Transitions: A Systematic Literature Review. Technol. Forecast. Soc. Change 2019, 145, 153–164. [Google Scholar] [CrossRef]
- Benighaus, C.; Benighaus, L. Moderation, Gesprächsaufbau und Dynamik in Fokusgruppen. In Fokusgruppen in der Empirischen Sozialwissenschaft; Schulz, M., Mack, B., Renn, O., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2012; pp. 111–132. ISBN 978-3-531-19396-0. [Google Scholar]
- Reed, M.S.; Graves, A.; Dandy, N.; Posthumus, H.; Hubacek, K.; Morris, J.; Prell, C.; Quinn, C.H.; Stringer, L.C. Who’s in and Why? A Typology of Stakeholder Analysis Methods for Natural Resource Management. J. Environ. Manag. 2009, 90, 1933–1949. [Google Scholar] [CrossRef] [PubMed]
- Luftverkehrs-Ordnung (LuftVO). Consolidated Version of 29 October 2015, BGBl. I S. 1894, last amended by Regelungen für Den Betrieb von Unbemannten Fluggeräten in Geografischen Gebieten Nach der Durchführungsverordnung (EU) 2019/947 from 18.06.2021. Available online: https://www.gesetze-im-internet.de/luftvo_2015/ (accessed on 16 October 2025).
- Bachmann, G. Teilnehmende Beobachtung. In Handbuch Methoden der Organisationsforschung; Kühl, S., Strodtholz, P., Taffertshofer, A., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2009; pp. 248–271. ISBN 978-3-531-15827-3. [Google Scholar]
- De Simone, C.; Ceci, F.; Alaimo, C. Data Ecosystem and Data Value Chain: An Exploration of Drones Technology Applications. In Sustainable Digital Transformation; Za, S., Winter, R., Lazazzara, A., Eds.; Lecture Notes in Information Systems and Organisation; Springer International Publishing: Cham, Switzerland, 2023; Volume 59, pp. 203–218. ISBN 978-3-031-15769-1. [Google Scholar]
- Umlauf, R.; Burchardt, M. Infrastructure-as-a-Service: Empty Skies, Bad Roads, and the Rise of Cargo Drones. Environ. Plan. A Econ. Space 2022, 54, 1489–1509. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Vidal-Bover, M. Unfunded Mandates and the Economic Impact of Decentralisation. When Finance Does Not Follow Function. Political Stud. 2024, 72, 652–676. [Google Scholar] [CrossRef]
- Wandelt, S.; Wang, S.; Zheng, C.; Sun, X. AERIAL: A Meta Review and Discussion of Challenges Toward Unmanned Aerial Vehicle Operations in Logistics, Mobility, and Monitoring. IEEE Trans. Intell. Transp. Syst. 2023, 25, 6276–6289. [Google Scholar] [CrossRef]
- Ilić, D.; Milošević, I.; Ilić-Kosanović, T. Application of Unmanned Aircraft Systems for Smart City Transformation: Case Study Belgrade. Technol. Forecast. Soc. Change 2022, 176, 121487. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Idries, A.; Mohammed, F. Unmanned Aerial Vehicles Applications in Future Smart Cities. Technol. Forecast. Soc. Change 2020, 153, 119293. [Google Scholar] [CrossRef]
- Josipovic, N. Möglichkeiten und Grenzen für Die Regelung Des Unbemannten Luftverkehrs Durch Gemeinden; Forschungsstelle Mobilitätsrecht der Technischen Universität Braunschweig: Braunschweig, Germany, 2021. [Google Scholar]
- Valentiner, D.-S.; Johannsen, J. Nachhaltigkeit Im Luftverkehrsrecht—Steuerungsperspektiven für Die U-Space-Gesetzgebung Zum Urbanen Drohnenverkehr. Neue Z. f. Verwaltungsrecht (NVwZ) 2023, 2023, 1863+. [Google Scholar]
- Lundqvist, R.; Nožková, S.; Martijnse-Hartikka, R.; Syrivli, Z.; Pamp, K. CITYAM—Regulations and Integration of Urban Air Mobility in City Planning. An Overview of National and Local Regulations in Baltic Sea Region Countries and Policy Analysis for the Introduction of Urban Air Mobility in Cities and Regions; Kista Science City: Stockholm, Sweden, 2023. [Google Scholar]
- Ganić, E.; Barrado, C.; Krstić Simić, T.; Kuljanin, J.; Baena, M. Unmanned Aircraft for Emergency Deliveries Between Hospitals in Madrid: Estimating Time Savings and Predictability. Drones 2025, 9, 728. [Google Scholar] [CrossRef]
- Elsayed, M.; Mohamed, M. The Impact of Airspace Regulations on Unmanned Aerial Vehicles in Last-Mile Operation. Transp. Res. Part D Transp. Environ. 2020, 87, 102480. [Google Scholar] [CrossRef]
- Naeem, N.; Ratei, P.; Prakasha, P.S.; Asmer, L.; Jaksche, R.; Pak, H.; Schweiger, K.; Velieva, A.; Naser, F.; Swaid, M.; et al. A Collaborative System of Systems Simulation of Urban Air Mobility. CEAS Aeronaut. J. 2025, 16, 729–744. [Google Scholar] [CrossRef]
- Preis, L.; Husemann, M.; Shamiyeh, M. Time- and Energy-Saving Potentials of Efficient Urban Air Mobility Airspace Structures. AIAA J. 2023, 61, 5571–5583. [Google Scholar] [CrossRef]
- UAM Initiative Cities Community (UIC2). Manifesto on the Multilevel Governance of the Urban Sky; UAM Initiative Cities Community (UIC2): Amsterdam, The Netherlands, 2020. [Google Scholar]
- Perperidou, D.G.; Kirgiafinis, D. Urban Air Mobility (UAM) Integration to Urban Planning. In Smart Energy for Smart Transport; Nathanail, E.G., Gavanas, N., Adamos, G., Eds.; Lecture Notes in Intelligent Transportation and Infrastructure; Springer Nature: Cham, Switzerland, 2023; pp. 1676–1686. ISBN 978-3-031-23720-1. [Google Scholar]
- Schweiger, K.; Preis, L. Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations. Drones 2022, 6, 179. [Google Scholar] [CrossRef]
- Alwateer, M.; Loke, S.W. Emerging Drone Services: Challenges and Societal Issues. IEEE Technol. Soc. Mag. 2020, 39, 47–51. [Google Scholar] [CrossRef]
- Moscholidou, I.; Marsden, G.; Pangbourne, K. Steering Smart Mobility Services: Lessons from Seattle, Greater Manchester and Stockholm. Sustainability 2023, 15, 4566. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Loorbach, D. Towards Governing Infrasystem Transitions. Technol. Forecast. Soc. Change 2010, 77, 1292–1301. [Google Scholar] [CrossRef]
- Malekpour, S.; Brown, R.R.; De Haan, F.J. Strategic Planning of Urban Infrastructure for Environmental Sustainability: Understanding the Past to Intervene for the Future. Cities 2015, 46, 67–75. [Google Scholar] [CrossRef]
- Bobylev, N. Mainstreaming Sustainable Development into a City’s Master Plan: A Case of Urban Underground Space Use. Land Use Policy 2009, 26, 1128–1137. [Google Scholar] [CrossRef]
- Barbano, M.; Costa, V. Implementing Urban Air Mobility in a Multi-Level Regulatory Framework: Perspectives from the EU. In Proceedings of the 2023 International Conference on Unmanned Aircraft Systems (ICUAS), Warsaw, Poland, 6–9 June 2023; pp. 895–902. [Google Scholar]
- Clothier, R.A.; Greer, D.A.; Greer, D.G.; Mehta, A.M. Risk Perception and the Public Acceptance of Drones: Risk Perception and the Public Acceptance of Drones. Risk Anal. 2015, 35, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Lidynia, C.; Philipsen, R.; Ziefle, M. Droning on About Drones—Acceptance of and Perceived Barriers to Drones in Civil Usage Contexts. In Advances in Human Factors in Robots and Unmanned Systems; Savage-Knepshield, P., Chen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 499, pp. 317–329. ISBN 978-3-319-41958-9. [Google Scholar]
- Zenz, A.; Powles, J. Resisting Technological Inevitability: Google Wing’s Delivery Drones and the Fight for Our Skies. Philos. Trans. R. Soc. A 2024, 382, 20240107. [Google Scholar] [CrossRef] [PubMed]
- Upadrasta, V.; Hamdan, J.; Leitner, R.; Kolrep, H. Who Are the Stakeholders of Drone Use? Roles, Benefits, Risk Perceptions, and Solutions. In Human Interaction, Emerging Technologies and Future Systems V; Ahram, T., Taiar, R., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2022; Volume 319, pp. 572–579. ISBN 978-3-030-85539-0. [Google Scholar]
- Biehle, T.; Kellermann, R. Mind the Gap: Concepts and Pathways for a Societally Acceptable Future of UAS in Europe; Sky Limits: Brussels, Belgium, 2019. [Google Scholar]
- Boucher, P. ‘You Wouldn’t Have Your Granny Using Them’: Drawing Boundaries Between Acceptable and Unacceptable Applications of Civil Drones. Sci. Eng. Ethics 2016, 22, 1391–1418. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, R.; Fischer, L. Drones for Parcel and Passenger Transport: A Qualitative Exploration of Public Acceptance. Sociol. Technosci. 2020, 10, 106–138. [Google Scholar] [CrossRef]
- Ireland Department of Transport. Unmanned Aircraft Systems Public Consultation on Policy Framework 2024; Department of Transport: Dublin, Ireland, 2024.
- Gouveia, M.; Dias, V.; Silva, J. Urban Air Mobility for Sustainable and Smart Portuguese Cities: A Living Lab in Lisbon. Rev. Port. Estud. Reg. 2023, 66, 153–166. [Google Scholar] [CrossRef]
- Jackman, A.; Millner, N.; Cunliffe, A.M.; Laumonier, Y.; Lunstrum, E.; Paneque-Gálvez, J.; Wich, S.A. Protecting People and Wildlife from the Potential Harms of Drone Use in Biodiversity Conservation: Interdisciplinary Dialogues. Glob. Soc. Chall. J. 2023, 2, 68–83. [Google Scholar] [CrossRef]
- Dolata, M.; Schwabe, G. Moving beyond Privacy and Airspace Safety: Guidelines for Just Drones in Policing. Gov. Inf. Q. 2023, 40, 101874. [Google Scholar] [CrossRef]
- Van Der Meij, M.G.; Fraaije, A.; Broerse, J.E.W.; Kupper, F. Guiding Visions of Corporate Smart City Innovators: Identifying Opportunities for Participatory Futuring. Futures 2023, 154, 103269. [Google Scholar] [CrossRef]
- Dienel, P.C. Planungszellen—Elemente Partizipativer Technikfolgenabschätzung. In Technikfolgenabschätzung als Politische Aufgabe; Oldenbourg Wissenschaftsverlag: Munich, Germany, 1997; pp. 159–176. [Google Scholar]
- Dienel, P.C. Die Planungszelle; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2002. [Google Scholar]
- Biehle, T.; Kellermann, R. Machbarkeitsstudie zur Verbesserung der Ländlichen Nahversorgung Mit Lieferdrohnen. Standort 2024, 48, 44–51. [Google Scholar] [CrossRef]
- Dietrich, A.M. Components of Public Acceptance for AAM & UAM; The Community Air Mobility Initiative (CAMI): Bainbridge Island, WA, USA, 2020. [Google Scholar]


| Represented Institutions | (A) UAM Strategy Workshop | (B) U-Space Authority Enquiry | (C) Planning Workshop |
|---|---|---|---|
| State Authority for Economy | x | x | x |
| State Authority for Urban Development | x | x | x |
| State Authority for Mobility | x | x | x |
| State Authority for Home Affairs | x | x | x |
| State Authority for Environment | x | x | x |
| State Authority for Culture | x | x | |
| State Authority for Education | x | ||
| Hamburg Governing Council | x | ||
| District | x | ||
| Police | x | x | |
| Fire Brigade | x | x | |
| Port Authority | x | ||
| State Organization for Roads, Bridges and Waterways | x | x | |
| State Office for Geoinformation and Surveying | x | x | |
| Cluster Management Digital Mobility Transition | x | ||
| Public Film Funding Organization | x | ||
| Cluster Management Aviation (Co-Facilitation) | x | x | |
| Academia (Facilitation) | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biehle, T. Urban Dimension of U-Space: Local Planning Considerations for Drone Integration. Drones 2025, 9, 744. https://doi.org/10.3390/drones9110744
Biehle T. Urban Dimension of U-Space: Local Planning Considerations for Drone Integration. Drones. 2025; 9(11):744. https://doi.org/10.3390/drones9110744
Chicago/Turabian StyleBiehle, Tobias. 2025. "Urban Dimension of U-Space: Local Planning Considerations for Drone Integration" Drones 9, no. 11: 744. https://doi.org/10.3390/drones9110744
APA StyleBiehle, T. (2025). Urban Dimension of U-Space: Local Planning Considerations for Drone Integration. Drones, 9(11), 744. https://doi.org/10.3390/drones9110744

