Advances in Cartography, Mission Planning, Path Search, and Path Following for Drones
1. Introduction
2. Statistics of the Special Issue
3. Overview of Contributions
Funding
Conflicts of Interest
List of Contributions
- Zhang, S.; Hu, C.; Zhao, D.; Yang, K.; Xu, Z.; Li, M. A Two-Stage Multi-UAV Task Allocation Approach Based on Graph Theory and a Learning-Inspired Immune Algorithm. Drones 2025, 9, 599. https://doi.org/10.3390/drones9090599.
- Lanča, L.; Mališa, M.; Jakac, K.; Ivić, S. Optimal Flight Speed and Height Parameters for Computer Vision Detection in UAV Search. Drones 2025, 9, 595. https://doi.org/10.3390/drones9090595.
- Li, Y.; Chen, W.; Fu, B.; Wu, Z.; Hao, L. A Hierarchical Decoupling Task Planning Method for Multi-UAV Collaborative Multi-Region Coverage with Task Priority Awareness. Drones 2025, 9, 575. https://doi.org/10.3390/drones9080575.
- Tong, H.; Li, B.; Huang, H.; Wen, C. Multi-Layer Path Planning for Complete Structural Inspection Using UAV. Drones 2025, 9, 541. https://doi.org/10.3390/drones9080541.
- Xu, T.; Meng, W.; Zhang, J. Energy Optimal Trajectory Planning for the Morphing Solar-Powered Unmanned Aerial Vehicle Based on Hierarchical Reinforcement Learning. Drones 2025, 9, 498. https://doi.org/10.3390/drones9070498.
- Rahman, M.; Sarkar, N.; Lutui, R. A Survey on Multi-UAV Path Planning: Classification, Algorithms, Open Research Problems, and Future Directions. Drones 2025, 9, 263. https://doi.org/10.3390/drones9040263.
- Kapari, M.; Sibanda, M.; Magidi, J.; Mabhaudhi, T.; Mpandeli, S.; Nhamo, L. Assessment of the Maize Crop Water Stress Index (CWSI) Using Drone-Acquired Data Across Different Phenological Stages. Drones 2025, 9, 192. https://doi.org/10.3390/drones9030192.
- Jiang, C.; Yang, L.; Gao, Y.; Zhao, J.; Hou, W.; Xu, F. An Intelligent 5G Unmanned Aerial Vehicle Path Optimization Algorithm for Offshore Wind Farm Inspection. Drones 2025, 9, 47. https://doi.org/10.3390/drones9010047.
- Huang, Y.; Li, H.; Dai, Y.; Lu, G.; Duan, M. A 3D Path Planning Algorithm for UAVs Based on an Improved Artificial Potential Field and Bidirectional RRT*. Drones 2024, 8, 760. https://doi.org/10.3390/drones8120760.
- Sikora, T.; Papić, V. Survey of Path Planning for Aerial Drone Inspection of Multiple Moving Objects. Drones 2024, 8, 705. https://doi.org/10.3390/drones8120705.
- Huang, J.; Fan, Z.; Yan, Z.; Duan, P.; Mei, R.; Cheng, H. Efficient UAV Exploration for Large-Scale 3D Environments Using Low-Memory Map. Drones 2024, 8, 443. https://doi.org/10.3390/drones8090443.
- Liu, X.; Li, D.; Wang, Y.; Zhang, Y.; Zhuang, X.; Li, H. Research on a Distributed Cooperative Guidance Law for Obstacle Avoidance and Synchronized Arrival in UAV Swarms. Drones 2024, 8, 352. https://doi.org/10.3390/drones8080352.
- Esfahlani, S.; Simanjuntak, S.; Sanaei, A.; Fraess-Ehrfeld, A. Advanced UAV Routing and Scheduling for Emergency Medical Supply Chains in Essex County. Drones 2025, 9, 664. https://doi.org/10.3390/drones9090664.
- Wei, D.; Zhang, L.; Liu, Q.; Chen, H.; Huang, J. UAV Swarm Cooperative Dynamic Target Search: A MAPPO-Based Discrete Optimal Control Method. Drones 2024, 8, 214. https://doi.org/10.3390/drones8060214.
References
- Rogers, S.R.; Singh, K.K.; Mathews, A.J.; Cummings, A.R. Drones and Geography: Who Is Using Them and Why? Prof. Geogr. 2022, 74, 516–528. [Google Scholar] [CrossRef]
- Fish, A. Participatory Cartography: Drones, Countermapping, and Technological Power. In The Handbook of Peer Production; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 185–196. [Google Scholar]
- Gohari, A.; Ahmad, A.B.; Rahim, R.B.A.; Supa’at, A.S.M.; Abd Razak, S.; Gismalla, M.S.M. Involvement of surveillance drones in smart cities: A systematic review. IEEE Access 2022, 10, 56611–56628. [Google Scholar] [CrossRef]
- Theja, G.U.S.; Murari, M.S.; Singha, M.F.; Patgiri, R.; Choudhury, A. A survey on surveillance using drones. In Proceedings of the 2022 Fourteenth International Conference on Contemporary Computing, Noida, India, 4–6 August 2022. [Google Scholar]
- Li, F.; Kunze, O. A comparative review of air drones (UAVs) and delivery bots (SUGVs) for automated last mile home delivery. Logistics 2023, 7, 21. [Google Scholar] [CrossRef]
- Hwang, J.; Cho, S.B.; Kim, W. Consequences of psychological benefits of using eco-friendly services in the context of drone food delivery services. In Future of Tourism Marketing; Routledge: Oxfordshire, UK, 2021; pp. 67–78. [Google Scholar]
- Rohi, G.; Ejofodomi, O.T.; Ofualagba, G. Autonomous monitoring, analysis, and countering of air pollution using environmental drones. Heliyon 2020, 6, e03252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, X. Drone-enabled Internet-of-Things relay for environmental monitoring in remote areas without public networks. IEEE Internet Things J. 2020, 7, 7648–7662. [Google Scholar] [CrossRef]
- Rejeb, A.; Abdollahi, A.; Rejeb, K.; Treiblmaier, H. Drones in agriculture: A review and bibliometric analysis. Comput. Electron. Agric. 2022, 198, 107017. [Google Scholar] [CrossRef]
- Dutta, G.; Goswami, P. Application of drone in agriculture: A review. Int. J. Chem. Stud. 2020, 8, 181–187. [Google Scholar] [CrossRef]
- Deaconu, A.M.; Udroiu, R.; Nanau, C.Ş. Algorithms for delivery of data by drones in an isolated area divided into squares. Sensors 2021, 21, 5472. [Google Scholar] [CrossRef]
- Da Rosa, R.; Aurelio Wehrmeister, M.; Brito, T.; Lima, J.L.; Pereira, A.I.P.N. Honeycomb Map: A Bioinspired Topological Map for Indoor Search and Rescue Unmanned Aerial Vehicles. Sensors 2020, 20, 907. [Google Scholar] [CrossRef] [PubMed]
- Udroiu, R.; Blaj, M. Conceptual design of a VTOL remotely piloted aircraft for emergency missions. Sci. Res. Educ. Air Force 2016, 18, 207–214. [Google Scholar] [CrossRef]
- Horstrand, P.; Guerra, R.; Rodriguez, A.; Diaz, M.; López, S.; López, J.F. A UAV platform based on a hyperspectral sensor for image capturing and on-board processing. IEEE Access 2019, 7, 66919–66938. [Google Scholar] [CrossRef]
- Morales, A.; Guerra, R.; Horstrand, P.; Diaz, M.; Jimenez, A.; Melian, J.; Lopez, S.; Lopez, J.F. A multispectral camera development: From the prototype assembly until its use in a UAV system. Sensors 2020, 20, 6129. [Google Scholar] [CrossRef]
- Beaver, J.T.; Baldwin, R.W.; Messinger, M.; Newbolt, C.H.; Ditchkoff, S.S.; Silman, M.R. Evaluating the use of drones equipped with thermal sensors as an effective method for estimating wildlife. Wildl. Soc. Bull. 2020, 44, 434–443. [Google Scholar] [CrossRef]
- Nithyavathy, N.; Kumar, S.A.; Rahul, D.; Kumar, B.S.; Shanthini, E.R.; Naveen, C. Detection of fire prone environment using Thermal Sensing Drone. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1055, p. 12006. [Google Scholar]
- Virtue, J.; Turner, D.; Williams, G.; Zeliadt, S.; McCabe, M.; Lucieer, A. Thermal sensor calibration for unmanned aerial systems using an external heated shutter. Drones 2021, 5, 119. [Google Scholar] [CrossRef]
- Lednev, V.N.; Grishin, M.Y.; Sdvizhenskii, P.A.; Kurbanov, R.K.; Litvinov, M.A.; Gudkov, S.V.; Pershin, S.M. Fluorescence mapping of agricultural fields utilizing drone-based LIDAR. Photonics 2022, 9, 963. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.A.; Lucieer, A.; Potts, B.M.; Davidson, N.; Hunt, M. From drones to phenotype: Using UAV-LiDAR to detect species and provenance variation in tree productivity and structure. Remote Sens. 2020, 12, 3184. [Google Scholar] [CrossRef]
- de Almeida, D.R.A.; Zambrano, A.M.A.; Broadbent, E.N.; Wendt, A.L.; Foster, P.; Wilkinson, B.E.; Salk, C.; Papa, D.d.A.; Stark, S.C.; Valbuena, R.; et al. Detecting successional changes in tropical forest structure using GatorEye drone-borne lidar. Biotropica 2020, 52, 1155–1167. [Google Scholar] [CrossRef]
- Dogru, S.; Marques, L. Pursuing drones with drones using millimeter wave radar. IEEE Robot. Autom. Lett. 2020, 5, 4156–4163. [Google Scholar] [CrossRef]
- Hoang, M.L.; Carratù, M.; Paciello, V.; Pietrosanto, A. Fusion Filters between the No Motion No Integration Technique and Kalman Filter in Noise Optimization on a 6DoF Drone for Orientation Tracking. Sensors 2023, 23, 5603. [Google Scholar] [CrossRef]
- Montañez, O.J.; Suarez, M.J.; Fernandez, E.A. Application of data sensor fusion using extended kalman filter algorithm for identification and tracking of moving targets from LiDAR–radar data. Remote Sens. 2023, 15, 3396. [Google Scholar] [CrossRef]
- Tayyebi, J.; Deaconu, A. Inverse Generalized Maximum Flow Problems. Mathematics 2019, 7, 899. [Google Scholar] [CrossRef]
- Alzahrani, M.Y. Enhancing drone security through multi-sensor anomaly detection and machine learning. SN Comput. Sci. 2024, 5, 651. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Byeon, J.I.; Han, S.; Myung, R.; Joung, J.; Choi, J. CNN-based UAV detection and classification using sensor fusion. IEEE Access 2023, 11, 68791–68808. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Torabbeigi, M.; Lim, G.J.; Kim, S.J. Drone delivery scheduling optimization considering payload-induced battery consumption rates. J. Intell. Robot. Syst. 2020, 97, 471–487. [Google Scholar] [CrossRef]
- Pasha, J.; Elmi, Z.; Purkayastha, S.; Fathollahi-Fard, A.M.; Ge, Y.E.; Lau, Y.Y.; Dulebenets, M.A. The drone scheduling problem: A systematic state-of-the-art review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 14224–14247. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Guo, H.; Kato, N. Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Netw. 2020, 34, 278–283. [Google Scholar] [CrossRef]
- Zou, Y.; Zhu, J.; Wu, T.; Guo, H.; Wei, H. Cooperative drone communications for space-air-ground integrated networks. IEEE Netw. 2021, 35, 100–106. [Google Scholar] [CrossRef]
- de Oliveira, F.M.; Bittencourt, L.F.; Bianchi, R.A.; Kamienski, C.A. Drones in the big city: Autonomous collision avoidance for aerial delivery services. IEEE Trans. Intell. Transp. Syst. 2023, 25, 4657–4674. [Google Scholar] [CrossRef]
- Shen, K.; Shivgan, R.; Medina, J.; Dong, Z.; Rojas-Cessa, R. Multidepot drone path planning with collision avoidance. IEEE Internet Things J. 2022, 9, 16297–16307. [Google Scholar] [CrossRef]
- Hong, D.; Lee, S.; Cho, Y.H.; Baek, D.; Kim, J.; Chang, N. Energy-efficient online path planning of multiple drones using reinforcement learning. IEEE Trans. Veh. Technol. 2021, 70, 9725–9740. [Google Scholar] [CrossRef]
- Yasin, J.N.; Mohamed, S.A.S.; Haghbayan, M.H.; Heikkonen, J.; Tenhunen, H.; Yasin, M.M.; Plosila, J. Energy-efficient formation morphing for collision avoidance in a swarm of drones. IEEE Access 2020, 8, 170681–170695. [Google Scholar] [CrossRef]
- Shivgan, R.; Dong, Z. Energy-efficient drone coverage path planning using genetic algorithm. In Proceedings of the 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), Newark, NJ, USA, 11–14 May 2020; pp. 1–6. [Google Scholar]
- Beigi, P.; Rajabi, M.S.; Aghakhani, S. An overview of drone energy consumption factors and models. In Handbook of Smart Energy Systems; Springer: Cham, Switzerland, 2023; pp. 529–548. [Google Scholar]
- Fang, J.; Huang, C.; Tang, T.; Wang, Z. Parallel programming models for heterogeneous many-cores: A comprehensive survey. CCF Trans. High Perform. Comput. 2020, 2, 382–400. [Google Scholar] [CrossRef]
- Iqbal, U.; Davies, T.; Perez, P. A review of recent hardware and software advances in GPU-accelerated edge-computing Single-Board Computers (SBCs) for computer vision. Sensors 2024, 24, 4830. [Google Scholar] [CrossRef] [PubMed]
- Deaconu, A.M.; Cotfas, D.T.; Cotfas, P.A. Calculation of seven photovoltaic cells parameters using parallelized successive discretization algorithm. Int. J. Photoenergy 2020, 2020, 6669579. [Google Scholar] [CrossRef]
- Bateni, S.; Wang, Z.; Zhu, Y.; Hu, Y.; Liu, C. Co-Optimizing Performance and Memory Footprint Via Integrated CPU/GPU Memory Management, an Implementation on Autonomous Driving Platform. arXiv 2020, arXiv:2003.07945. [Google Scholar]
- Spridon, D. Advances in CUDA for computational physics. In Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer Science; Transilvania University Press: Brașov, Romania, 2023; pp. 227–236. [Google Scholar]
- Hernández, D.; Cano, J.C.; Silla, F.; Calafate, C.T.; Cecilia, J.M. AI-enabled autonomous drones for fast climate change crisis assessment. IEEE Internet Things J. 2021, 9, 7286–7297. [Google Scholar] [CrossRef]
- Spridon, D.E.; Deaconu, A.M.; Tayyebi, J. Novel GPU-Based Method for the Generalized Maximum Flow Problem. Computation 2025, 13, 40. [Google Scholar] [CrossRef]
- Thomas, T.; Srinivas, S.; Rajendran, C. Collaborative truck multi-drone delivery system considering drone scheduling and en route operations. Ann. Oper. Res. 2024, 339, 693–739. [Google Scholar] [CrossRef]
- Lin, N.; Fu, L.; Zhao, L.; Min, G.; Al-Dubai, A.; Gacanin, H. A novel multimodal collaborative drone-assisted VANET networking model. IEEE Trans. Wirel. Commun. 2020, 19, 4919–4933. [Google Scholar] [CrossRef]
- Khan, A.A.; Laghari, A.A.; Gadekallu, T.R.; Shaikh, Z.A.; Javed, A.R.; Rashid, M.; Estrela, V.V.; Mikhaylov, A. A drone-based data management and optimization using metaheuristic algorithms and blockchain smart contracts in a secure fog environment. Comput. Electr. Eng. 2022, 102, 108234. [Google Scholar] [CrossRef]
- Kainz, O.; Michalko, M.; Murin, M.; Nováková, I.; Frankovič, T.; Tóth, T.; Šimko, E. Autonomous Control of an UAV in a Virtual Environment Using Machine Learning and Pathfinding. In Proceedings of the 2024 IEEE 17th International Scientific Conference on Informatics (Informatics), Poprad, Slovakia, 13–15 November 2024; pp. 121–131. [Google Scholar]
- Alkazzi, J.M.; Okumura, K. A comprehensive review on leveraging machine learning for multi-agent path finding. IEEE Access 2024, 12, 57390–57409. [Google Scholar] [CrossRef]
- Wankmüller, C.; Kunovjanek, M.; Mayrgündter, S. Drones in emergency response–evidence from cross-border, multi-disciplinary usability tests. Int. J. Disaster Risk Reduct. 2021, 65, 102567. [Google Scholar] [CrossRef]
- Nooralishahi, P.; Ibarra-Castanedo, C.; Deane, S.; López, F.; Pant, S.; Genest, M.; Avdelidis, N.P.; Maldague, X.P.V. Drone-based non-destructive inspection of industrial sites: A review and case studies. Drones 2021, 5, 106. [Google Scholar] [CrossRef]
- Hu, D.; Minner, J. UAVs and 3D city modeling to aid urban planning and historic preservation: A systematic review. Remote Sens. 2023, 15, 5507. [Google Scholar] [CrossRef]
No. | Country | No. of Authors | Percentage (%) |
---|---|---|---|
1 | China | 46 | 67.6 |
2 | Croatia | 6 | 8.8 |
3 | South Africa | 6 | 8.8 |
4 | UK | 5 | 7.4 |
5 | New Zealand | 3 | 4.4 |
6 | Australia | 1 | 1.5 |
7 | Canada | 1 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deaconu, A.M.; Udroiu, R.; Spridon, D.E. Advances in Cartography, Mission Planning, Path Search, and Path Following for Drones. Drones 2025, 9, 677. https://doi.org/10.3390/drones9100677
Deaconu AM, Udroiu R, Spridon DE. Advances in Cartography, Mission Planning, Path Search, and Path Following for Drones. Drones. 2025; 9(10):677. https://doi.org/10.3390/drones9100677
Chicago/Turabian StyleDeaconu, Adrian Marius, Razvan Udroiu, and Delia Elena Spridon. 2025. "Advances in Cartography, Mission Planning, Path Search, and Path Following for Drones" Drones 9, no. 10: 677. https://doi.org/10.3390/drones9100677
APA StyleDeaconu, A. M., Udroiu, R., & Spridon, D. E. (2025). Advances in Cartography, Mission Planning, Path Search, and Path Following for Drones. Drones, 9(10), 677. https://doi.org/10.3390/drones9100677