Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools
Abstract
:1. Introduction
2. Fundamentals of FMCW Radar Systems
3. Data Collection
4. Machine Learning for UAV Classification
4.1. Classification of UAVs and Birds
4.2. Micro-Doppler Signatures for UAV Classification
4.3. RCS-Based UAV Detection and Classification
4.4. Multi-Static Radar Systems for UAV Detection
4.5. UAV Detection and Classification in Low SNR Conditions
4.6. MIMO Radars for UAV Classification
4.7. SPC Techniques for Noise Reduction
4.8. Radar Digital Beamforming Technology
4.9. Full-Wave EM CAD Tools for UAV Classification
5. Challenges, Future Directions, and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heathrow Airport: Drone Sighting Halts Departures—BBC News. Available online: https://www.bbc.com/news/uk-46803713 (accessed on 24 August 2022).
- Drone Sightings Keep Closing London’s Airports—Bloomberg. Available online: https://www.bloomberg.com/news/articles/2019-01-09/drone-sightings-keep-closing-london-s-airports (accessed on 24 August 2022).
- Shrapnel Injures 12 at Saudi Abha Airport as Drone Intercepted—Reuters. Available online: https://www.reuters.com/world/middle-east/saudi-led-coalition-says-destroyed-drone-launched-towards-abha-airport-4-injured-2022-02-10/ (accessed on 24 August 2022).
- Iraq Assassination Attempt Signals New Era of Non-State Drone Attacks—Middle East Eye. Available online: https://www.middleeasteye.net/opinion/iraq-assassination-new-era-drone-non-state-actors (accessed on 24 August 2022).
- Turkey Closes Diyarbakir Airport for Month after Drone Attack ‘by PKK’-World—The Times. Available online: https://www.thetimes.com/world/europe/article/turkey-closes-diyarbakir-airport-for-month-after-drone-attack-by-pkk-gmcj8skfz (accessed on 24 August 2022).
- Drone Attack in Abu Dhabi Kills 3 Wounds 6—CBC News. Available online: https://www.cbc.ca/news/world/abu-dhabi-drone-attack-1.6317555 (accessed on 24 August 2022).
- Flights Diverted at East Midlands Airport after Drone Sightings—Air Transport—The Guardian. Available online: https://www.theguardian.com/world/2022/jun/11/flights-diverted-at-east-midlands-airport-after-drone-sightings (accessed on 24 August 2022).
- RCMP Charge Two from B.C. after Drone Used to Smuggle Drugs into Prison—CTV News. Available online: https://winnipeg.ctvnews.ca/drone-used-to-smuggle-drugs-into-manitoba-prison-rcmp-charge-two-men-from-b-c-1.5980061 (accessed on 24 August 2022).
- Small Drones Are Giving Ukraine an Unprecedented Edge—WIRED. Available online: https://www.wired.com/story/drones-russia-ukraine-war/ (accessed on 24 August 2022).
- Ukraine: How Drones Are Changing the Way of War—Science—In-Depth Reporting on Science and Technology—DW. Available online: https://www.dw.com/en/ukraine-how-drones-are-changing-the-way-of-war/a-61681013 (accessed on 24 August 2022).
- Budget Drones in Ukraine Are Redefining Warfare—IEEE Spectrum. Available online: https://spectrum.ieee.org/drone-warfare-ukraine (accessed on 11 November 2023).
- Khan, M.A.; Menouar, H.; Eldeeb, A.; Abu-Dayya, A.; Salim, F.D. On the Detection of Unauthorized Drones—Techniques and Future Perspectives: A Review. IEEE Sens. J. 2022, 22, 11439–11455. [Google Scholar] [CrossRef]
- Lykou, G.; Moustakas, D.; Gritzalis, D. Defending airports from uas: A survey on cyber-attacks and counter-drone sensing technologies. Sensors 2020, 20, 3537. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, H.T.; Lee, S.; Joo, H.; Kim, H. Survey on Anti-Drone Systems: Components, Designs, and Challenges. IEEE Access 2021, 9, 42635–42659. [Google Scholar] [CrossRef]
- Samaras, S.; Diamantidou, E.; Ataloglou, D.; Sakellariou, N.; Vafeiadis, A.; Magoulianitis, V.; Lalas, A.; Dimou, A.; Zarpalas, D.; Votis, K.; et al. Deep learning on multi sensor data for counter UAV applications—A systematic review. Sensors 2019, 19, 4837. [Google Scholar] [CrossRef] [PubMed]
- Flórez, J.; Ortega, J.; Betancourt, A.; García, A.; Bedoya, M.; Botero, J.S. A review of algorithms, methods, and techniques for detecting UAVs and UAS using audio, radiofrequency, and video applications. Tecnológicas 2020, 23, 269–285. [Google Scholar] [CrossRef]
- Sedunov, A.; Haddad, D.; Salloum, H.; Sutin, A.; Sedunov, N.; Yakubovskiy, A. Stevens Drone Detection Acoustic System and Experiments in Acoustics UAV Tracking. In Proceedings of the 2019 IEEE International Symposium on Technologies for Homeland Security (HST), Woburn, MA, USA, 5–6 November 2019. [Google Scholar] [CrossRef]
- Balachandran, V.; Sarath, S. A Novel Approach to Detect Unmanned Aerial Vehicle using Pix2Pix Generative Adversarial Network. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 1368–1373. [Google Scholar] [CrossRef]
- Hanif, A.; Muaz, M.; Hasan, A.; Adeel, M. Micro-Doppler Based Target Recognition With Radars: A Review. IEEE Sens. J. 2022, 22, 2948–2961. [Google Scholar] [CrossRef]
- Semkin, V.; Haarla, J.; Pairon, T.; Slezak, C.; Rangan, S.; Viikari, V.; Oestges, C. Analyzing Radar Cross Section Signatures of Diverse Drone Models at mmWave Frequencies. IEEE Access 2020, 8, 48958–48969. [Google Scholar] [CrossRef]
- Roldan, I.; Del-Blanco, C.R.; De Quevedo, Á.D.; Urzaiz, F.I.; Menoyo, J.G.; López, A.A.; Berjón, D.; Jaureguizar, F.; García, N. DopplerNet: A convolutional neural network for recognising targets in real scenarios using a persistent range-Doppler radar. IET Radar Sonar Navig. 2020, 14, 593–600. [Google Scholar] [CrossRef]
- Karlsson, A.; Jansson, M.; Hämäläinen, M. Model-Aided Drone Classification Using Convolutional Neural Networks. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 21–25 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kumawat, H.C.; Chakraborty, M.; Raj, A.A.B.; Dhavale, S.V. DIAT-μSAT: Small Aerial Targets’ Micro-Doppler Signatures and Their Classification Using CNN. IEEE Geosci. Remote Sens. Lett. 2021, 19, 6004005. [Google Scholar] [CrossRef]
- Kumawat, H.C.; Chakraborty, M.; Raj, A.A.B. DIAT-RadSATNet-A Novel Lightweight DCNN Architecture for Micro-Doppler-Based Small Unmanned Aerial Vehicle (SUAV) Targets’ Detection and Classification. IEEE Trans. Instrum. Meas. 2022, 71, 8504011. [Google Scholar] [CrossRef]
- Raval, D.; Hunter, E.; Hudson, S.; Damini, A.; Balaji, B. Convolutional Neural Networks for Classification of Drones Using Radars. Drones 2021, 5, 149. [Google Scholar] [CrossRef]
- Moore, M.; Robertson, D.; Rahman, S.; Robertson, D.A.; Doppler, G. 94 GHz Doppler radar for experimental validation of small UAV micro-Doppler. Radar Sens. Technol. XXVI 2022, 12108, 281–291. [Google Scholar] [CrossRef]
- Moore, M.; Robertson, D.A.; Rahman, S. Simulating UAV micro-Doppler using dynamic point clouds. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 21–25 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- White, D.; Jahangir, M.; Antoniou, M.; Baker, C.; Thiyagalingam, J.; Harman, S.; Bennett, C. Multi-rotor Drone Micro-Doppler Simulation Incorporating Genuine Motor Speeds and Validation with L-band Staring Radar. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 21–25 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, X.; Wang, P.; Cao, X.; Chen, V.C. Interferometric angular velocity measurement of rotating blades: Theoretical analysis, modeling and simulation study. IET Radar Sonar Navig. 2019, 13, 438–444. [Google Scholar] [CrossRef]
- Speirs, P.; Murk, A.; Renker, M.; Wellig, P.; Aulenbacher, U. High-detail simulations of consumer-grade UAV RCS signatures, and comparisons against measurements. In Proceedings of the STO-MP-MSG-SET-183, Virtual Mode via WebEX, 27 April 2021; pp. 1–26. [Google Scholar]
- Schroder, A.; Renker, M.; Aulenbacher, U.; Murk, A.; Boniger, U.; Oechslin, R.; Wellig, P. Numerical and experimental radar cross section analysis of the quadrocopter DJI Phantom 2. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 463–468. [Google Scholar] [CrossRef]
- Lehmann, L.; Dall, J. Simulation-based Approach to Classification of Airborne Drones. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sayed, A.N.; Ramahi, O.M.; Shaker, G. Machine Learning for UAV Classification Employing Mechanical Control Information. IEEE Trans. Aerosp. Electron. Syst. 2023, 60, 68–81. [Google Scholar] [CrossRef]
- Sayed, A.N.; Abedi, H.; Ramahi, O.M.; Shaker, G. Enhanced UAV Detection and Classification Using Machine Learning and MIMO Radars. IEEE Trans. Microw. Theory Tech. 2024, 1–12. [Google Scholar] [CrossRef]
- Sayed, A.N.; Ramahi, O.M.; Shaker, G. RDIwS: An Efficient Beamforming-Based Method for UAV Detection and Classification. IEEE Sens. J. 2024, 24, 15230–15240. [Google Scholar] [CrossRef]
- Sayed, A.N.; Ramahi, O.M.; Shaker, G. In the Realm of Aerial Deception: UAV Classification via ISAR Images and Radar Digital Twins for Enhanced Security. IEEE Sens. Lett. 2024, 8, 6007704. [Google Scholar] [CrossRef]
- Sayed, A.N.; Riad, M.M.Y.R.; Ramahi, O.M.; Shaker, G. A Methodology for UAV Classification using Machine Learning and Full-Wave Electromagnetic Simulations. In Proceedings of the 2022 International Telecommunications Conference (ITC-Egypt), Alexandria, Egypt, 26–28 July 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Sayed, A.N.; Abedi, H.; Ramahi, O.M.; Shaker, G. On the Impact of an Antenna Field of View on the Classification of UAVs. In Proceedings of the 2023 International Workshop on Antenna Technology (iWAT), Aalborg, Denmark, 15–17 May 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Sayed, A.N.; Ramahi, O.M.; Shaker, G. UAV Classification Utilizing Radar Digital Twins. In Proceedings of the 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 23–28 July 2023; pp. 741–742. [Google Scholar] [CrossRef]
- Sayed, A.N.; Ramahi, O.M.; Shaker, G. Detection and Classification of Drones using Radars, AI, and Full-Wave Electromagnetic CAD Tool. In Drones—Various Applications; Cvetković, D.D.M., Ed.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- Sayed, A.N.; Tran, H.H.; Ramahi, O.M.; Shaker, G. Radar-Based Digital Twins for Classification of UAVs and Avian Targets. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 10–14 December 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Skolnik, M.I. Radar Handbook; McGraw Hill Book Co.: New York, NY, USA, 1970. [Google Scholar]
- Skolnik, M.I. Introduction to Radar Systems; McGraw-Hill Education: New York, NY, USA, 1980. [Google Scholar]
- Kang, K.B.; Choi, J.H.; Cho, B.L.; Lee, J.S.; Kim, K.T. Analysis of Micro-Doppler Signatures of Small UAVs Based on Doppler Spectrum. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3252–3267. [Google Scholar] [CrossRef]
- Sun, H.; Oh, B.S.; Guo, X.; Lin, Z. Improving the Doppler Resolution of Ground-Based Surveillance Radar for Drone Detection. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3667–3673. [Google Scholar] [CrossRef]
- Oh, B.S.; Lin, Z. Extraction of Global and Local Micro-Doppler Signature Features from FMCW Radar Returns for UAV Detection. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1351–1360. [Google Scholar] [CrossRef]
- Tsang, B.; Narayanan, R.; Tsang, R.B.B.; Narayanan, R.M.; Bharadwaj, R.; Tsang, B.T. Experimental analysis of micro-Doppler characteristics of drones and birds for classification purposes. Radar Sens. Technol. XXVI 2022, 12108, 198–210. [Google Scholar] [CrossRef]
- Harmanny, R.I.A.; de Wit, J.J.M.; Cabic, G.P. Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram. In Proceedings of the 2014 11th European Radar Conference, Rome, Italy, 8–10 October 2014; pp. 165–168. [Google Scholar] [CrossRef]
- Hong, T.; Fang, C.; Hao, H.; Sun, W. Identification Technology of UAV Based on Micro-Doppler Effect. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin City, China, 28 June–2 July 2021; pp. 308–311. [Google Scholar] [CrossRef]
- Rahman, S.; Robertson, D. Time-Frequency Analysis of Millimeter-Wave Radar Micro-Doppler Data from Small UAVs. In Proceedings of the 2017 Sensor Signal Processing for Defence Conference (SSPD), London, UK, 6–7 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Rahman, S.; Robertson, D.A. Radar micro-Doppler signatures of drones and birds at K-band and W-band. Sci. Rep. 2018, 8, 17396. [Google Scholar] [CrossRef] [PubMed]
- Molchanov, P.; Egiazarian, K.; Astola, J.; Harmanny, R.I.A.; de Wit, J.J.M. Classification of small UAVs and birds by micro-Doppler signatures. In Proceedings of the 2013 European Radar Conference, Nuremberg, Germany, 9–11 October 2013; pp. 172–175. [Google Scholar]
- Wang, Y.; Zhao, C.; Luo, G. A lightweight UAV recognition algorithm based on micro-Doppler features. In Proceedings of the 2021 IEEE/CIC International Conference on Communications in China (ICCC), Xiamen, China, 28–30 July 2021; pp. 6–10. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, Y. The Extraction of Micro-Doppler Signal with EMD Algorithm for Radar-Based Small UAVs’ Detection. IEEE Trans. Instrum. Meas. 2020, 69, 929–940. [Google Scholar] [CrossRef]
- Dai, T.; Xu, S.; Tian, B.; Hu, J.; Zhang, Y.; Chen, Z. Extraction of Micro-Doppler Feature Using LMD Algorithm Combined Supplement Feature for UAVs and Birds Classification. Remote Sens. 2022, 14, 2196. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Song, J.; Guan, J.; Li, J.; He, Z. Micro-Motion Classification of Flying Bird and Rotor Drones via Data Augmentation and Modified Multi-Scale CNN. Remote Sens. 2022, 14, 1107. [Google Scholar] [CrossRef]
- Spreading Wings S900—DJI. Available online: https://www.dji.com/ca/spreading-wings-s900 (accessed on 11 January 2022).
- DJI S900 Hex-Rotor Drone|3D CAD Model Library|GrabCAD. Available online: https://grabcad.com/library/dji-s900-hex-rotor-drone-1 (accessed on 5 January 2023).
- Ansys Inc. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 11 January 2022).
- Guo, X.; Ng, C.S.; de Jong, E.; Smits, A.B. Micro-Doppler Based Mini-UAV Detection with Low-Cost Distributed Radar in Dense Urban Environment. In Proceedings of the 2019 16th European Radar Conference (EuRAD), Paris, France, 2–4 October 2019; pp. 189–192. [Google Scholar]
- Yoon, S.; Kim, S.; Jung, J.; Cha, S.; Baek, Y.; Koo, B.; Choi, I.; Park, S. Efficient Protocol to Use FMCW Radar and CNN to Distinguish Micro-Doppler Signatures of Multiple Drones and Birds. IEEE Access 2022, 10, 26033–26044. [Google Scholar] [CrossRef]
- Ren, J.; Jiang, X. Regularized 2-D complex-log spectral analysis and subspace reliability analysis of micro-Doppler signature for UAV detection. Pattern Recognit. 2017, 69, 225–237. [Google Scholar] [CrossRef]
- Bennett, C.; Jahangir, M.; Fioranelli, F.; Ahmad, B.I.; Kernec, J.L. Use of Symmetrical Peak Extraction in Drone Micro-Doppler Classification for Staring Radar. In Proceedings of the 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 21–25 September 2020. [Google Scholar] [CrossRef]
- Paredes, J.A.; Álvarez, F.J.; Hansard, M.; Rajab, K.Z. A Gaussian Process model for UAV localization using millimetre wave radar. Expert Syst. Appl. 2021, 185, 115563. [Google Scholar] [CrossRef]
- Bernard-Cooper, J.; Rahman, S.; Robertson, D.; Robertson, D.A. Multiple drone type classification using machine learning techniques based on FMCW radar micro-Doppler data. Radar Sens. Technol. XXVI 2022, 12108, 99–112. [Google Scholar] [CrossRef]
- Hunter, E.; Raval, D.; Balaji, B.; Hunter, A.D.E.; Damini, A.; Carniglia, P. Convolutional neural networks and wavelets for drone classification. Radar Sens. Technol. XXVI 2022, 12108, 211–223. [Google Scholar] [CrossRef]
- Björklund, S. Target Detection and Classification of Small Drones by Boosting on Radar Micro-Doppler. In Proceedings of the 2018 15th European Radar Conference (EuRAD), Madrid, Spain, 23–28 September 2018; pp. 182–185. [Google Scholar] [CrossRef]
- Chen, W.S.; Liu, J.; Li, J. Classification of UAV and bird target in low-altitude airspace with surveillance radar data. Aeronaut. J. 2019, 123, 191–211. [Google Scholar] [CrossRef]
- Oh, B.S.; Guo, X.; Wan, F.; Toh, K.A.; Lin, Z. Micro-Doppler Mini-UAV Classification Using Empirical-Mode Decomposition Features. IEEE Geosci. Remote Sens. Lett. 2018, 15, 227–231. [Google Scholar] [CrossRef]
- Oh, B.S.; Guo, X.; Lin, Z. A UAV classification system based on FMCW radar micro-Doppler signature analysis. Expert Syst. Appl. 2019, 132, 239–255. [Google Scholar] [CrossRef]
- Ma, X.; Oh, B.S.; Sun, L.; Toh, K.A.; Lin, Z. EMD-Based Entropy Features for micro-Doppler Mini-UAV Classification. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; pp. 1295–1300. [Google Scholar] [CrossRef]
- Passafiume, M.; Rojhani, N.; Collodi, G.; Cidronali, A. Modeling small UAV micro-doppler signature using millimeter-wave FMCW radar. Electronics 2021, 10, 747. [Google Scholar] [CrossRef]
- Ji, G.; Song, C.; Huo, H. Detection and Identification of Low-Slow-Small Rotor Unmanned Aerial Vehicle Using Micro-Doppler Information. IEEE Access 2021, 9, 99995–100008. [Google Scholar] [CrossRef]
- Reddy, V.V.; Peter, S. UAV micro-Doppler signature analysis using FMCW radar. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7–14 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, A.; Sévigny, P.; Balaji, B.; Rajan, S. Radar Micro-Doppler-based Rotary Drone Detection using Parametric Spectral Estimation Methods. In Proceedings of the 2020 IEEE SENSORS, Rotterdam, The Netherlands, 25–28 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Rojhani, N.; Passafiume, M.; Sadeghibakhi, M.; Collodi, G.; Cidronali, A. Model-Based Data Augmentation Applied to Deep Learning Networks for Classification of Micro-Doppler Signatures Using FMCW Radar. IEEE Trans. Microw. Theory Techn. 2022, 71, 2222–2236. [Google Scholar] [CrossRef]
- Li, C.J.; Ling, H. An Investigation on the Radar Signatures of Small Consumer Drones. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 649–652. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, L.; Chen, G.; Li, G. Classification of drones based on micro-doppler signatures with dual-band radar sensors. In Proceedings of the 2017 Progress in Electromagnetics Research Symposium—Fall (PIERS—FALL), Singapore, 19–22 November 2017; pp. 638–643. [Google Scholar] [CrossRef]
- Zhang, P.; Li, G.; Huo, C.; Yin, H. Exploitation of multipath micro-Doppler signatures for drone classification. IET Radar Sonar Navig. 2020, 14, 586–592. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Baker, C. Radar recognition of multiple micro-drones based on their micro-Doppler signatures via dictionary learning. IET Radar Sonar Navig. 2020, 14, 1310–1318. [Google Scholar] [CrossRef]
- Rai, P.K.; Idsoe, H.; Yakkati, R.R.; Kumar, A.; Khan, M.Z.A.; Yalavarthy, P.K.; Cenkeramaddi, L.R. Localization and Activity Classification of Unmanned Aerial Vehicle Using mmWave FMCW Radars. IEEE Sens. J. 2021, 21, 16043–16053. [Google Scholar] [CrossRef]
- Kim, B.K.; Kang, H.S.; Park, S.O. Drone classification using convolutional neural networks with merged doppler images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 38–42. [Google Scholar] [CrossRef]
- Caris, M.; Johannes, W.; Sieger, S.; Port, V.; Stanko, S. Detection of small UAS with W-band radar. In Proceedings of the 2017 18th International Radar Symposium (IRS), Prague, Czech Republic, 28–30 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Mendis, G.J.; Randeny, T.; Wei, J.; Madanayake, A. Deep learning based doppler radar for micro UAS detection and classification. In Proceedings of the MILCOM 2016—2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016; pp. 924–929. [Google Scholar] [CrossRef]
- Ritchie, M.; Fioranelli, F.; Griffiths, H.; Torvik, B. Micro-drone RCS analysis. In Proceedings of the 2015 IEEE Radar Conference, Johannesburg, South Africa, 27–30 October 2015; pp. 452–456. [Google Scholar] [CrossRef]
- Ezuma, M.; Anjinappa, C.K.; Funderburk, M.; Guvenc, I. Radar Cross Section Based Statistical Recognition of UAVs at Microwave Frequencies. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 27–46. [Google Scholar] [CrossRef]
- Fu, R.; Al-Absi, M.A.; Kim, K.H.; Lee, Y.S.; Al-Absi, A.A.; Lee, H.J. Deep Learning-Based Drone Classification Using Radar Cross Section Signatures at mmWave Frequencies. IEEE Access 2021, 9, 161431–161444. [Google Scholar] [CrossRef]
- Ritchie, M.; Fioranelli, F.; Borrion, H.; Griffiths, H. Multistatic micro-Doppler radar feature extraction for classification of unloaded/loaded micro-drones. IET Radar Sonar Navig. 2017, 11, 116–124. [Google Scholar] [CrossRef]
- Patel, J.S.; Al-Ameri, C.; Fioranelli, F.; Anderson, D. Multi-time frequency analysis and classification of a micro-drone carrying payloads using multistatic radar. J. Eng. 2019, 2019, 7047–7051. [Google Scholar] [CrossRef]
- Hoffmann, F.; Ritchie, M.; Fioranelli, F.; Charlish, A.; Griffiths, H. Micro-Doppler based detection and tracking of UAVs with multistatic radar. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Palamà, R.; Fioranelli, F.; Ritchie, M.; Inggs, M.; Lewis, S.; Griffiths, H. Measurements and discrimination of drones and birds with a multi-frequency multistatic radar system. IET Radar Sonar Navig. 2021, 15, 841–852. [Google Scholar] [CrossRef]
- Dale, H.; Baker, C.; Antoniou, M.; Jahangir, M.; Atkinson, G.; Harman, S. SNR-dependent drone classification using convolutional neural networks. IET Radar Sonar Navig. 2022, 16, 22–33. [Google Scholar] [CrossRef]
- Dale, H.; Jahangir, M.; Baker, C.J.; Antoniou, M.; Harman, S.; Ahmad, B.I. Convolutional Neural Networks for Robust Classification of Drones. In Proceedings of the 2022 IEEE Radar Conference (RadarConf22), New York City, NY, USA, 21–25 March 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Shin, D.H.; Jung, D.H.; Kim, D.C.; Ham, J.W.; Park, S.O. A Distributed FMCW Radar System Based on Fiber-Optic Links for Small Drone Detection. IEEE Trans. Instrum. Meas. 2017, 66, 340–347. [Google Scholar] [CrossRef]
- Ezuma, M.; Ozdemir, O.; Anjinappa, C.K.; Gulzar, W.A.; Guvenc, I. Micro-UAV Detection with a Low-Grazing Angle Millimeter Wave Radar. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Biallawons, O.; Klare, J.; Fuhrmann, L. Improved UAV Detection with the MIMO Radar MIRA-CLE Ka using Range-Velocity Processing and TDMA Correction Algorithms. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Cidronali, A.; Passafiume, M.; Colantonio, P.; Collodi, G.; Florian, C.; Leuzzi, G.; Pirola, M.; Ramella, C.; Santarelli, A.; Traverso, P. System Level Analysis of Millimetre-wave GaN-based MIMO Radar for Detection of Micro Unmanned Aerial Vehicles. In Proceedings of the 2019 PhotonIcs & Electromagnetics Research Symposium—Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 438–450. [Google Scholar] [CrossRef]
- Al-Nuaim, T.; Alam, M.; Aldowesh, A. Low-Cost Implementation of a Multiple-Input Multiple-Output Radar Prototype for Drone Detection. In Proceedings of the 2019 International Symposium ELMAR, Zadar, Croatia, 23–25 September 2019; pp. 183–186. [Google Scholar] [CrossRef]
- Yang, F.; Xu, F.; Fioranelli, F.; Kernec, J.L.; Chang, S.; Long, T. Practical Investigation of a MIMO radar system capabilities for small drones detection. IET Radar Sonar Navig. 2021, 15, 760–774. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; Zhang, J.; Cao, X.; Zhao, C. Ultra-Fast Accurate AoA Estimation via Automotive Massive-MIMO Radar. IEEE Trans. Veh. Technol. 2022, 71, 1172–1186. [Google Scholar] [CrossRef]
- Fang, X.; Zhu, J.; Huang, D.; Zhang, Z.; Xiao, G. E2DTF: An End-to-End Detection and Tracking Framework for Multiple Micro-UAVs With FMCW-MIMO Radar. IEEE Trans. Microw. Theory Tech. 2023, 61, 2000916. [Google Scholar] [CrossRef]
- Park, J.; Park, S.; Kim, D.H.; Park, S.O. Leakage mitigation in heterodyne FMCW radar for small drone detection with stationary point concentration technique. IEEE Trans. Microw. Theory Tech. 2019, 67, 1221–1232. [Google Scholar] [CrossRef]
- Park, J.; Jung, D.H.; Bae, K.B.; Park, S.O. Range-Doppler Map Improvement in FMCW Radar for Small Moving Drone Detection Using the Stationary Point Concentration Technique. IEEE Trans. Microw. Theory Tech. 2020, 68, 1858–1871. [Google Scholar] [CrossRef]
- Park, J.; Park, J.S.; Bae, K.B.; Park, S.O. Advanced Stationary Point Concentration Technique for Leakage Mitigation and Small Drone Detection with FMCW Radar. IEEE Trans. Microw. Theory Tech. 2021, 69, 1791–1804. [Google Scholar] [CrossRef]
- Gruener, W.; Toernig, J.; Fielding, P. Active-electronically-scanned-array based radar system features. In Proceedings of the Radar 97 (Conf. Publ. No. 449), Edinburgh, UK, 14–16 October 1997; pp. 339–343. [Google Scholar] [CrossRef]
- de Quevedo, A.D.; Urzaiz, F.I.; Menoyo, J.G.; Lopez, A.A. Drone Detection with X-Band Ubiquitous Radar. In Proceedings of the 2018 19th International Radar Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–10. [Google Scholar] [CrossRef]
- de Quevedo, A.D.; Urzaiz, F.I.; Menoyo, J.G.; Lopez, A.A. Drone detection and radar-cross-section measurements by RAD-DAR. IET Radar Sonar Navig. 2019, 13, 1437–1447. [Google Scholar] [CrossRef]
- Haifawi, H.; Fioranelli, F.; Yarovoy, A.; van der Meer, R. Drone Detection & Classification with Surveillance ‘Radar On-The-Move’ and YOLO. In Proceedings of the 2023 IEEE Radar Conference (RadarConf23), San Antonio, TX, USA, 1–5 May 2023; pp. 1–6. [Google Scholar] [CrossRef]
Method | Acoustic | Optical | Radio Sensors | Radars |
---|---|---|---|---|
LOS Independence | ✓ | × | × | × |
Long Range Detection | × | × | ✓ | ✓ |
Weather Conditions | × | × | ✓ | ✓ |
Detect Autonomous UAVs | ✓ | ✓ | × | ✓ |
Classify UAVs and Birds | × | ✓ | × | ✓ |
Compatibility with ML | ✓ | ✓ | ✓ | ✓ |
Detect Controller Location | × | × | ✓ | × |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, A.N.; Ramahi, O.M.; Shaker, G. Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools. Drones 2024, 8, 370. https://doi.org/10.3390/drones8080370
Sayed AN, Ramahi OM, Shaker G. Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools. Drones. 2024; 8(8):370. https://doi.org/10.3390/drones8080370
Chicago/Turabian StyleSayed, Ahmed N., Omar M. Ramahi, and George Shaker. 2024. "Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools" Drones 8, no. 8: 370. https://doi.org/10.3390/drones8080370
APA StyleSayed, A. N., Ramahi, O. M., & Shaker, G. (2024). Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools. Drones, 8(8), 370. https://doi.org/10.3390/drones8080370