Exploring the Potential of Remote Sensing to Facilitate Integrated Weed Management in Smallholder Farms: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Characteristics
3.2. Key Attributes
Remote Sensing Technologies
Algorithms and Methodologies
Studies on Crops Association with Weeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, F.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Chivenge, P.; Mabhaudhi, T.; Modi, T.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Modi, T. Status of Underutilised Crops in South Africa: Opportunities for Developing Research Capacity. Sustainability 2017, 9, 1569. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chibarabada, T.; Chimonyo, V.G.P.; Murugani, V.G.; Pereira, L.M.; Sobratee, N.; Govender, L.; Slotow, R.; Modi, T. Mainstreaming Underutilized Indigenous and Traditional Crops into Food Systems: A South African Perspective. Sustainability 2019, 11, 172. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Chibarabada, T.P.; Modi, T. Developing a Roadmap for Improving Neglected and Underutilized Crops: A Case Study of South Africa. Front. Plant Sci. 2017, 8, 2143. [Google Scholar] [CrossRef]
- Mayes, S.; Massawe, F.J.; Alderson, P.G.; Roberts, J.A.; Azam-Ali, S.N.; Herman, M. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 2011, 63, 1075–1079. [Google Scholar] [CrossRef]
- Modi, A.T.; Mabhaudhi, T. Developing a Research Agenda for Promoting Underutilised, Indigenous and Traditional Crops; Water Research Commission (WRC): Pretoria, South Africa, 2016. [Google Scholar]
- Li, X.; Yadav, R.; Siddique, K.H.M. Neglected and Underutilized Crop Species: The Key to Improving Dietary Diversity and Fighting Hunger and Malnutrition in Asia and the Pacific. Front. Nutr. 2020, 7, 593711. [Google Scholar] [CrossRef] [PubMed]
- Iyagba, A.G. A review on root and tuber crop production and their weed management among small scale farmers in Nigeria. ARPN J. Agric. Biol. Sci. 2010, 5, 52–58. [Google Scholar]
- Padulosi, S.; Thompson, J.; Rudebjer, P. Fighting Poverty, Hunger and Malnutrition with Neglected and Underutilized Species (NUS): Needs, Challenges and the Way Forward; Biodiversity International: Rome, Italy, 2013. [Google Scholar]
- Kamara, A.; Conteh, A.; Rhodes, E.R.; Cooke, R.A. The Relevance of Smallholder Farming to African Agricultural Growth and Development. Afr. J. Food Agric. Nutr. Dev. 2019, 19, 14043–14065. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). Precision Agriculture for Smallholder Farmers; UNDP Global Centre for Technology, Innovation and Sustainable Development: Singapore, 2021. [Google Scholar]
- Ekeleme, F.; Dixon, A.; Atser, G.; Hauser, S.; Chikoye, D.; Korie, S.; Olojede, A.; Agada, M.; Olorunmaiye, P.M. Increasing cassava root yield on farmers’ fields in Nigeria through appropriate weed management. Crop Prot. 2021, 150, 105810. [Google Scholar] [CrossRef] [PubMed]
- Nedunchezhiyan, M.; Ravindan, C.S.; Ravi, V. Weed Management in Root and Tuber Crops in India: Critical Analysis. J. Root Crops 2013, 39, 13–20. [Google Scholar]
- Soares, M.R.S.; Neto, A.C.A.; José, A.R.S.; Lima, R.S.; Moreira, E.S.; Prado, T.R.; Silva, R.A.S.; Moreira, G.L.P. Effect of weeds on yield loss of cassava plants in response to NPK fertilization. Afr. J. Agric. Res. 2016, 11, 356–370. [Google Scholar] [CrossRef]
- Kumar, J.S.; Nedunchezhiyan, M.; Sunitha, S. Weed control approaches for tropical tuber crops—A review. Int. J. Veg. Sci. 2020, 27, 439–455. [Google Scholar] [CrossRef]
- Omeje, T.E.; Awere, S.U.; Adinde, J.O. Weed Management Strategies in Colocasia esculenta Field Caused by Phytophthora colocasiae and Global Climate Change. Int. J. Agric. Res. 2022, 17, 62–69. [Google Scholar] [CrossRef]
- Esposito Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. Agric. 2021, 8, 18. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Soisouvanh, S.; Phongchanmixay, S. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm. Plant Prod. Sci. 2021, 24, 198–215. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Che’Ya, N.N.; Juraimi, A.S.; Ilahi, W.F.F.; Roslim, M.H.M.; Sulaiman, N.; Saberioon, M.; Noor, N.M. How Can Unmanned Aerial Vehicles Be Used for Detecting Weeds in Agricultural Fields? Agriculture 2021, 11, 1004. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. IEEE Internet Things 2020, 18, 100187. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Fletcher, R.S.; Pennington, D. UAV Low-Altitude Remote Sensing for Precision Weed Management. Weed Technol. 2018, 32, 2–6. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, H.; McNairn, H.; Madhianpari, M.; Homayouni, S. A Meta-Analysis of Remote Sensing Technologies and Methodologies for Crop Characterization. Remote Sens. 2022, 14, 5633. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Gallo, I.; Ur Rehman, A.; Dehkordi, R.H.; Landro, N.; Grassa, R.L.; Boschetti, M. Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images. Remote Sens. 2023, 15, 539. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Peña-Barragan, J.M.; García-Torres, L. Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci. 2006, 54, 346–353. [Google Scholar] [CrossRef]
- Roslim, M.H.M.; Juraimi, A.S.; Che’Ya, N.N.; Sulaiman, N.; Manaf, M.N.H.A.; Ramli, Z.; Motmainna, M. Using Remote Sensing and an Unmanned Aerial System for Weed Management in Agricultural Crops: A Review. Agronomy 2021, 11, 1809. [Google Scholar] [CrossRef]
- Stroppiana, D.; Villa, P.; Sona, G.; Ronchetti, G.; Candiani, G.; Pepe, M.; Busetto, L.; Migliazzi, M.; Boschetti, M. Early season weed mapping in rice crops using multi-spectral UAV data. Int. J. Remote Sens. 2018, 39, 5432–5452. [Google Scholar] [CrossRef]
- Rosle, R.; Che’ya, N.N.; Ang, Y.; Rahmat, F.; Wayayok, A.; Berahim, Z.; Ilahi, W.F.F.; Ismail, M.R.; Omar, M.H. Weed detection in rice fields using remote sensing technique: A review. Appl. Sci. 2021, 11, 10701. [Google Scholar] [CrossRef]
- De Giglio, M.; Greggio, N.; Goffo, F.; Merloni, N.; Dubbini, M.; Barbarella, M. Comparison of Pixel- and Object-Based Classification Methods of Unmanned Aerial Vehicle Data Applied to Coastal Dune Vegetation Communities: Casal Borsetti Case Study. Remote Sens. 2019, 11, 1416. [Google Scholar] [CrossRef]
- Tassi, A.; Gigante, D.; Modica, G.; Di Martino, L.; Vizzari, M. Pixel- vs. Object-Based Landsat 8 Data Classification in Google Earth Engine Using Random Forest: The Case Study of Maiella National Park. Remote Sens. 2021, 13, 2299. [Google Scholar] [CrossRef]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing object-based and pixel-based classifications for mapping savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [Google Scholar] [CrossRef]
- Castillejo-González, I.L.; Peña-Barragán, J.M.; Jurado-Expósito, M.; Mesas-Carrascosa, F.J.; López-Granados, F. Evaluation of pixel- and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. Eur. J. Agron. 2014, 59, 57–66. [Google Scholar] [CrossRef]
- El Immani, H.S.; El Harti, A.; Bachaoui, E.M.; Mouncif, H.; Eddassouqui, F.; Hasnai, M.A.; Zinelabidine, M.I. Multi-spectral UAV data for detection of weeds in a citrus farm using machine learning and Google Earth Engine: Case study of Morocco. Remote Sens. Appl. Soc. Environ. 2023, 30, 100941. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Mesas-Carrascosa, F.J.; Pérez-Porras, F.; López-Granados, F. Detection of Ecballium elaterium in hedgerow olive orchards using a low-cost uncrewed aerial vehicle and open-source algorithms. Pest Manag. Sci. 2022, 79, 645–654. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J.; Guda, B. Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
- Dutta, A.K.; Albagory, Y.; Sait, A.R.W.; Keshta, I.M. Autonomous Unmanned Aerial Vehicles Based Decision Support System for Weed Management. Comput. Mater. Contin. 2022, 73, 899–915. [Google Scholar] [CrossRef]
- Ettiene, A.; Ahmad, A.; Agarwal, V.; Saraswat, D. Deep Learning-Based Object Detection System for Identifying Weeds Using UAS Imagery. Remote Sens. 2021, 13, 5182. [Google Scholar] [CrossRef]
- McCarthy, C.; Nyoni, Y.; Kachamba, D.J.; Banda, L.B.; Moyo, B.; Chisambi, C.; Banfill, J.; Hoshino, B. Can Drones Help Smallholder Farmers Improve Agriculture Efficiencies and Reduce Food Insecurity in Sub-Saharan Africa? Local Perceptions from Malawi. Agriculture 2023, 13, 1075. [Google Scholar] [CrossRef]
- Gao, J.; Liao, W.; Nuyttens, D.; Lootens, P.; Vangeyte, J.; Pižurica, A.; He, Y.; Pieters, J.G. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 43–53. [Google Scholar] [CrossRef]
- Singh, V.; Rana, A.; Bishop, M.; Filippi, A.M.; Cope, D.; Rajan, N.; Bagavathiannan, M. Chapter Three—Unmanned aircraft systems for precision weed detection and management: Prospects and challenges. Adv. Agron. 2020, 159, 93–134. [Google Scholar] [CrossRef]
- Gokool, S.; Mahomed, M.; Kunz, R.; Clulow, A.; Sibanda, M.; Naiken, V.; Chetty, K.; Mabhaudhi, T. Crop Monitoring in Smallholder Farms Using Unmanned Aerial Vehicles to Facilitate Precision Agriculture Practices: A Scoping Review and Bibliometric Analysis. Sustainability 2023, 15, 3557. [Google Scholar] [CrossRef]
- Fernández-Quintanilla, C.; Peña, J.M.; Andújar, D.; Dorado, J.; Ribeiro, A.; López-Granados, F. Is the current state of the art of weed monitoring suitable for site-specific weed management in arable crops? Weed Res. 2018, 58, 259–272. [Google Scholar] [CrossRef]
- Navarro, J.A. First experiences with google earth engine. In Proceedings of the 3rd International Conference on Geographical Information Systems Theory, Applications and Management, Porto, Portugal, 27–28 April 2017; pp. 250–255. [Google Scholar] [CrossRef]
- Sapkota, B.B.; Popescu, S.; Rajan, N.; Leon, R.G.; Reberg-Horton, C.; Mirsky, S.; Bagavathiannan, M.V. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Sci. Rep. 2022, 12, 19580. [Google Scholar] [CrossRef]
- Xu, B.; Fan, J.; Chao, J.; Arsenijevic, N.; Werle, R.; Zhang, Z. Instance segmentation method for weed detection using UAV imagery in soybean fields. Comput. Electron. Agric. 2023, 211, 107994. [Google Scholar] [CrossRef]
- Hunter, J.E., III; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management. Pest Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kukal, M.S.; Irmak, S.; Jhala, A.J. Water Use Characteristics of Weeds: A Global Review, Best Practices, and Future Directions. Front. Plant Sci. 2022, 12, 794090. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth 2012, 47–48, 139–151. [Google Scholar] [CrossRef]
- López-Granados, F. Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Res. 2011, 51, 1–11. [Google Scholar] [CrossRef]
- Dobbs, A.M.; Ginn, D.; Skovsen, S.K.; Bagavathiannan, M.V.; Mirsky, S.B.; Reberg-Horton, C.S.; Leon, R.G. New directions in weed management and research using 3D imaging. Weed Sci. 2022, 70, 641–647. [Google Scholar] [CrossRef]
- Anderegg, J.; Tschurr, F.; Kirchgessner, N.; Treier, S.; Schmucki, M.; Streit, B.; Walter, A. On-farm evaluation of UAV-based aerial imagery for season-long weed monitoring under contrasting management and pedoclimatic conditions in wheat. Comput. Electron. Agric. 2023, 204, 107558. [Google Scholar] [CrossRef]
- Mabhaudhi, T. Drought Tolerance and Water-Use of Selected South African landraces of Taro (Colocasia esculenta L. schott) and Bambara Groundnut (Vigna subterranean L. Verdc). Ph.D. Dissertation, School of Agriculture, Earth and Environmental Sciences, Colleage of Agriculture, Engineering and Science, Pietermaritzburg, South Africa, 2012. [Google Scholar]
- Sivakumar, A.N.V.; Li, J.; Scott, S.; Psota, E.; Jhala, A.J.; Luck, J.D.; Shi, Y. Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sens. 2020, 12, 2136. [Google Scholar] [CrossRef]
- Rozenberg, G.; Kent, R.; Blank, L. Consumer-grade UAV utilized for detecting and analyzing late-season weed spatial distribution patterns in commercial onion fields. Precis. Agric. 2021, 22, 1317–1332. [Google Scholar] [CrossRef]
- Rai, N.; Zhang, Y.; Ram, B.G.; Schumacher, L.; Yellavajjala, R.K.; Bajwa, S.; Sun, X. Applications of deep learning in precision weed management: A review. Comput. Electron. Agric. 2023, 206, 107698. [Google Scholar] [CrossRef]
- Mattivi, P.; Pappalardo, S.E.; Nikolić, N.; Mandolesi, L.; Persichetti, A.; De Marchi, M.; Masin, R. Can commercial low-cost drones and open-source GIS technologies be suitable for semi-automatic weed mapping for smart farming? A case study in Italy. Remote Sens. 2021, 13, 1869. [Google Scholar] [CrossRef]
Description | Results | Description | Results |
---|---|---|---|
Time span | 2006–2023 | Keywords plus (ID) | 410.00 |
Number of journals | 24.00 | Author keywords (DE) | 192.00 |
Number of publications | 53.00 | Authors | 186.00 |
Annual growth rate | 13.80% | Single-authored articles | 0.00 |
Document average age | 4.91 | Co-authors per article | 4.94 |
Average citations per doc | 50.11 | International co-authorships | 15.09% |
Journal | Number of Publications | TCs | h-Index | Publication Year Start |
---|---|---|---|---|
Weed Science | 1 | 70 | 1 | 2006 |
Weed Research | 3 | 81 | 3 | 2007 |
Weed Biology and Management | 1 | 21 | 1 | 2007 |
Weed Technology | 1 | 12 | 1 | 2007 |
Computers and Electronics in Agriculture | 8 | 705 | 6 | 2008 |
Crop Protection | 1 | 13 | 1 | 2011 |
Precision Agriculture | 7 | 506 | 7 | 2012 |
Plos One | 2 | 363 | 2 | 2013 |
European Journal of Agronomy | 2 | 67 | 2 | 2014 |
Biosystems Engineering | 1 | 26 | 1 | 2015 |
Sensors (Switzerland) | 1 | 133 | 1 | 2015 |
Agronomy for Sustainable Development | 1 | 68 | 1 | 2016 |
Remote Sensing | 8 | 349 | 7 | 2018 |
International Journal of Applied Earth Observation and Geoinformation | 1 | 85 | 1 | 2018 |
International Journal of Remote Sensing | 1 | 44 | 1 | 2018 |
Pest Management Science | 2 | 42 | 1 | 2020 |
Spanish Journal of Agricultural Research | 1 | 4 | 1 | 2020 |
Agronomy | 5 | 44 | 3 | 2021 |
Plant Production Science | 1 | 18 | 1 | 2021 |
Scientific Reports | 1 | 2 | 1 | 2022 |
Remote Sensing Applications: Society and Environment | 1 | 2 | 1 | 2023 |
Smart Agricultural Technology | 1 | 1 | 1 | 2023 |
Author | h-Index | g-Index | m-Index | TCs | Number of Articles | Publication Start Year |
---|---|---|---|---|---|---|
LÓPEZ-GRANADOS F | 14.00 | 18.00 | 0.78 | 1833.00 | 18.00 | 2006 |
DE CASTRO AI | 10.00 | 11.00 | 0.83 | 1397.00 | 11.00 | 2012 |
TORRES-SÁNCHEZ J | 9.00 | 12.00 | 0.82 | 1393.00 | 12.00 | 2013 |
JURADO-EXPÓSITO M | 7.00 | 7.00 | 0.39 | 282.00 | 7.00 | 2006 |
PEÑA JM | 7.00 | 7.00 | 0.70 | 1114.00 | 7.00 | 2014 |
JIMÉNEZ-BRENES FM | 5.00 | 5.00 | 0.83 | 244.00 | 5.00 | 2018 |
PEÑA-BARRAGÁN JM | 5.00 | 5.00 | 0.29 | 444.00 | 5.00 | 2007 |
MESAS-CARRASCOSA FJ | 4.00 | 5.00 | 0.40 | 265.00 | 5.00 | 2014 |
RASMUSSEN J | 3.00 | 4.00 | 0.33 | 48.00 | 4.00 | 2015 |
SERRANO-PÉREZ A | 3.00 | 3.00 | 0.33 | 326.00 | 3.00 | 2015 |
Keywords | Frequency | Keywords Plus | Frequency |
---|---|---|---|
Site-specific weed management | 16 | Weed control | 31 |
Precision agriculture | 15 | Precision agriculture | 24 |
Remote sensing | 12 | Crops | 17 |
Unmanned aerial vehicles (UAV) | 9 | Remote sensing | 17 |
Deep learning | 8 | UAV | 17 |
Machine learning | 7 | Weed | 17 |
Vegetation indices | 5 | Deep learning | 15 |
Weed detection | 5 | Image analysis | 14 |
Weed mapping | 5 | Unmanned vehicle | 14 |
OBIA | 4 | Antennas | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokool, S.; Mahomed, M.; Clulow, A.; Sibanda, M.; Kunz, R.; Naiken, V.; Mabhaudhi, T. Exploring the Potential of Remote Sensing to Facilitate Integrated Weed Management in Smallholder Farms: A Scoping Review. Drones 2024, 8, 81. https://doi.org/10.3390/drones8030081
Gokool S, Mahomed M, Clulow A, Sibanda M, Kunz R, Naiken V, Mabhaudhi T. Exploring the Potential of Remote Sensing to Facilitate Integrated Weed Management in Smallholder Farms: A Scoping Review. Drones. 2024; 8(3):81. https://doi.org/10.3390/drones8030081
Chicago/Turabian StyleGokool, Shaeden, Maqsooda Mahomed, Alistair Clulow, Mbulisi Sibanda, Richard Kunz, Vivek Naiken, and Tafadzwanashe Mabhaudhi. 2024. "Exploring the Potential of Remote Sensing to Facilitate Integrated Weed Management in Smallholder Farms: A Scoping Review" Drones 8, no. 3: 81. https://doi.org/10.3390/drones8030081
APA StyleGokool, S., Mahomed, M., Clulow, A., Sibanda, M., Kunz, R., Naiken, V., & Mabhaudhi, T. (2024). Exploring the Potential of Remote Sensing to Facilitate Integrated Weed Management in Smallholder Farms: A Scoping Review. Drones, 8(3), 81. https://doi.org/10.3390/drones8030081