Flying towards the Future: Using Drones to Detect Lizards in Remote Alpine Terrain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drone Approach Distances
2.2. Drone vs. Visual Search Comparison
2.3. Statistical Analysis
2.3.1. Drone Approach Distances
2.3.2. Drone vs. Visual Search Comparison
3. Results
3.1. Drone Approach Distances
3.2. Drone vs. Visual Search Comparison
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hitchmough, R.; Adams, L.; Reardon, J.; Monks, J. Current challenges and future directions in lizard conservation in New Zealand. J. R. Soc. N. Z. 2016, 46, 29–39. [Google Scholar] [CrossRef]
- Monks, J.M.; O’Donnell, C.F.; Greene, T.C.; Weston, K.A. Evaluation of counting methods for monitoring populations of a cryptic alpine passerine, the rock wren (Passeriformes, Acanthisittidae, Xenicus gilviventris). PLoS ONE 2021, 16, e0247873. [Google Scholar] [CrossRef]
- Bollard, B.; Doshi, A.; Gilbert, N.; Poirot, C.; Gillman, L. Drone technology for monitoring protected areas in remote and fragile environments. Drones 2022, 6, 42. [Google Scholar] [CrossRef]
- Fettermann, T.; Fiori, L.; Gillman, L.; Stockin, K.A.; Bollard, B. Drone surveys are more accurate than boat-based surveys of bottlenose dolphins (Tursiops truncatus). Drones 2022, 6, 82. [Google Scholar] [CrossRef]
- Schofield, G.; Katselidis, K.A.; Lilley, M.K.; Reina, R.D.; Hays, G.C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 2017, 31, 2310–2319. [Google Scholar] [CrossRef]
- Dubos, N.; Porcel, X.; Roesch, M.; Claudin, J.; Pinel, R.; Probst, J.-M.; Deso, G. A bird’s-eye view: Evaluating drone imagery for the detection and monitoring of endangered and invasive day gecko species. Biotropica 2023, 55, 911–919. [Google Scholar] [CrossRef]
- Weimerskirch, H.; Prudor, A.; Schull, Q. Flights of drones over sub-Antarctic seabirds show species-and status-specific behavioural and physiological responses. Polar Biol. 2018, 41, 259–266. [Google Scholar] [CrossRef]
- Aota, T.; Ashizawa, K.; Mori, H.; Toda, M.; Chiba, S. Detection of Anolis carolinensis using drone images and a deep neural network: An effective tool for controlling invasive species. Biol. Invasions 2021, 23, 1321–1327. [Google Scholar] [CrossRef]
- Lettink, M.; Monks, J. Survey and monitoring methods for New Zealand lizards. J. R. Soc. N. Z. 2016, 46, 16–28. [Google Scholar] [CrossRef]
- Bell, K.L.; Bliss, L.C. Alpine disturbance studies: Olympic National Park, USA. Biol. Conserv. 1973, 5, 25–32. [Google Scholar] [CrossRef]
- Sato, C.; Wood, J.T.; Schroder, M.; Green, K.; Michael, D.; Lindenmayer, D.B. The impacts of ski resorts on reptiles: A natural experiment. Anim. Conserv. 2014, 17, 313–322. [Google Scholar] [CrossRef]
- D’cruze, N.; Kumar, S. Effects of anthropogenic activities on lizard communities in northern Madagascar. Anim. Conserv. 2011, 14, 542–552. [Google Scholar] [CrossRef]
- Hecnar, S.J. Effects of human disturbance on five-lined skink, Eumeces fasciatus, abundance and distribution. Biol. Conserv. 1998, 85, 213–222. [Google Scholar] [CrossRef]
- Mark, A.F.; Galloway, D.J. Above the Treeline: A Nature Guide to Alpine New Zealand; Craig Potton Publishing: Nelson, New Zealand, 2012. [Google Scholar]
- Lettink, M.; Hare, K.M. Sampling techniques for New Zealand lizards. In New Zealand Lizards; Springer International Publishing: Cham, Switzerland, 2016; pp. 269–291. [Google Scholar]
- Love, D. Subarctic and subalpine: Where and what? Arct. Alp. Res. 1970, 2, 63–73. [Google Scholar] [CrossRef]
- Hare, K.M.; Chapple, D.G.; Towns, D.R.; van Winkel, D. The ecology of New Zealand’s lizards. In New Zealand Lizards, Chapple, D.G., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 133–168. [Google Scholar]
- van Winkel, D.; Hitchmough, R.; Baling, M. Reptiles and Amphibians of New Zealand: A Field Guide; Auckland University Press: Auckland, New Zealand, 2018. [Google Scholar]
- McIntyre, N.E.; Wiens, J.A. Interactions between landscape structure and animal behavior: The roles of heterogeneously distributed resources and food deprivation on movement patterns. Landsc. Ecol. 1999, 14, 437–447. [Google Scholar] [CrossRef]
- Neilson, K.; Curran, J.M.; Towns, D.R.; Jamieson, H. Habitat use by chevron skinks (Oligosoma homalonotum)(Sauria: Scincidae) on Great Barrier Island, New Zealand. N. Z. J. Ecol. 2006, 30, 345–356. [Google Scholar]
- Plummer, M.V.; Mills, N.E. Spatial ecology and survivorship of resident and translocated hognose snakes (Heterodon platirhinos). J. Herpetol. 2000, 34, 565–575. [Google Scholar] [CrossRef]
- Knox, C.D.; Jewell, T.R.; Monks, J.M. Ecology of orange-spotted geckos (Mokopirirakau “Roys Peak”) in Central Otago and Queenstown-lakes districts. N. Z. J. Ecol. 2019, 43, 1–9. [Google Scholar] [CrossRef]
- Bertoia, A.; Monks, J.; Knox, C.; Cree, A. A nocturnally foraging gecko of the high-latitude alpine zone: Extreme tolerance of cold nights, with cryptic basking by day. J. Therm. Biol. 2021, 99, 102957. [Google Scholar] [CrossRef] [PubMed]
- Lettink, M.; O’Donnell, C.F.; Hoare, J.M. Accuracy and precision of skink counts from artificial retreats. N. Z. J. Ecol. 2011, 35, 236–246. [Google Scholar]
- Monks, J.M.; Wills, H.P.; Knox, C.D. Testing drones as a tool for surveying lizards. Drones 2022, 6, 199. [Google Scholar] [CrossRef]
- Cooper, W., Jr. Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis: Speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Can. J. Zool. 2003, 81, 979–984. [Google Scholar] [CrossRef]
- Bell, T.P.; Patterson, G.B. A rare alpine skink Oligosoma pikitanga n. sp.(Reptilia: Scincidae) from Llawrenny Peaks, Fiordland, New Zealand. Zootaxa 2008, 1882, 57–68. [Google Scholar] [CrossRef]
- Jewell, T.R.; Leschen, R.A. A new species of Hoplodactylus (Reptilia: Pygopodidae) from the Takitimu Mountains, South Island, New Zealand. Zootaxa 2004, 792, 1–11. [Google Scholar] [CrossRef]
- Patterson, G.B.; Bell, T.P. The Barrier skink Oligosoma judgei n. sp. (Reptilia: Scincidae) from the Darran and Takitimu Mountains, South Island, New Zealand. Zootaxa 2009, 2271, 43–56. [Google Scholar] [CrossRef]
- Whitaker, A. Hoplodactylus kahutarae n. sp. (Reptilia: Gekkonidae) from the seaward Kaikoura Range, Marlborough, New Zealand. N. Z. J. Zool. 1984, 11, 259–270. [Google Scholar] [CrossRef]
- Sewell, D.; Guillera-Arroita, G.; Griffiths, R.A.; Beebee, T.J. When is a species declining? Optimizing survey effort to detect population changes in reptiles. PLoS ONE 2012, 7, e43387. [Google Scholar] [CrossRef]
- Hare, K.M. Herpetofauna Model of the DOC Inventory and Monitoring Toolbox; Department of Conservation: Wellington, New Zealand, 2012. [Google Scholar]
- Hitchmough, R.; Barr, B.; Knox, C.; Lettink, M.; Monks, J.; Patterson, G.; Reardon, J.; van Winkel, D.; Rolfe, J.; Michel, P. Conservation Status of New Zealand Reptile, 2021; New Zealand Threat Classification Series 35; Department of Conservation: Wellington, New Zealand, 2021. [Google Scholar]
- O’Donnell, C.F.; Weston, K.A.; Monks, J.M. Impacts of introduced mammalian predators on New Zealand’s alpine fauna. N. Z. J. Ecol. 2017, 41, 1–22. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef]
- Sarda-Palomera, F.; Bota, G.; Viñolo, C.; Pallarés, O.; Sazatornil, V.; Brotons, L.; Gomáriz, S.; Sardà, F. Fine-scale bird monitoring from light unmanned aircraft systems. Ibis 2012, 154, 177–183. [Google Scholar] [CrossRef]
- Schofield, G.; Esteban, N.; Katselidis, K.A.; Hays, G.C. Drones for research on sea turtles and other marine vertebrates—A review. Biol. Conserv. 2019, 238, 108214. [Google Scholar] [CrossRef]
- Kays, R.; Sheppard, J.; McLean, K.; Welch, C.; Paunescu, C.; Wang, V.; Kravit, G.; Crofoot, M. Hot monkey, cold reality: Surveying rainforest canopy mammals using drone-mounted thermal infrared sensors. Int. J. Remote Sens. 2019, 40, 407–419. [Google Scholar] [CrossRef]
- Hensel, E.; Wenclawski, S.; Layman, C.A. Using a small, consumer-grade drone to identify and count marine megafauna in shallow habitats. Lat. Am. J. Aquat. Res. 2018, 46, 1025–1033. [Google Scholar] [CrossRef]
- Torney, C.J.; Lamont, M.; Debell, L.; Angohiatok, R.J.; Leclerc, L.-M.; Berdahl, A.M. Inferring the rules of social interaction in migrating caribou. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170385. [Google Scholar] [CrossRef]
- Strandburg-Peshkin, A.; Farine, D.R.; Crofoot, M.C.; Couzin, I.D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. eLife 2017, 6, e19505. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.R.; Gibbs, L.; Knott, N.A.; Broad, A.; Hing, M.; Taylor, M.D.; Davis, A.R. Coexisting with sharks: A novel, socially acceptable and non-lethal shark mitigation approach. Sci. Rep. 2020, 10, 17497. [Google Scholar] [CrossRef]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- Purdie, S. A Naturalist’s Guide to the Reptiles & Amphibians of New Zealand; Mayer, K., Ed.; John Beaufoy Publishing Limited: Oxford, UK, 2022; p. 176. [Google Scholar]
- Zani, P.; Jones, T.; Neuhaus, R.; Milgrom, J. Effect of refuge distance on escape behavior of side-blotched lizards (Uta stansburiana). Can. J. Zool. 2009, 87, 407–414. [Google Scholar] [CrossRef]
- Tingley, R.; Hitchmough, R.A.; Chapple, D.G. Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol. Conserv. 2013, 165, 62–68. [Google Scholar] [CrossRef]
- Whitaker, A. Lizard populations on islands with and without Polynesian rats, Rattus exulans (Peale). Proc. (N. Z. Ecol. Soc.) 1973, 20, 121–130. [Google Scholar]
- Rand, A.S. Inverse relationship between temperature and shyness in the lizard Anolis lineatopus. Ecology 1964, 45, 863–864. [Google Scholar] [CrossRef]
- Bennitt, E.; Bartlam-Brooks, H.L.; Hubel, T.Y.; Wilson, A.M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 2019, 9, 2142. [Google Scholar] [CrossRef] [PubMed]
- Ditmer, M.A.; Vincent, J.B.; Werden, L.K.; Tanner, J.C.; Laske, T.G.; Iaizzo, P.A.; Garshelis, D.L.; Fieberg, J.R. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Curr. Biol. 2015, 25, 2278–2283. [Google Scholar] [CrossRef] [PubMed]
- Barr, J.R.; Green, C.M.; DeMaso, S.J.; Hardy, T.B. Drone surveys do not increase colony-wide flight behaviour at waterbird nesting sites, but sensitivity varies among species. Sci. Rep. 2020, 10, 3781. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Savkin, A.V. Autonomous navigation of an aerial drone to observe a group of wild animals with reduced visual disturbance. IEEE Syst. J. 2022, 16, 3339–3348. [Google Scholar] [CrossRef]
- Knox, C.D.; Cree, A.; Seddon, P.J. Accurate identification of individual geckos (Naultinus gemmeus) through dorsal pattern differentiation. N. Z. J. Ecol. 2013, 37, 60–66. [Google Scholar]
- Chapple, D.G.; Hitchmough, R.A. Biogeography of New Zealand lizards. In New Zealand Lizards; Springer International Publishing: Cham, Switzerland, 2016; pp. 109–131. [Google Scholar] [CrossRef]
Species | Scientific Name | SVL (mm) | Habitat | Conservation Status |
---|---|---|---|---|
Scree skink | Oligosoma waimatense | ≤114 | Inhabits rock bluffs, alluvial rockflows, rocky riverbeds, boulderfields and scree. | Threatened–Nationally Vulnerable |
Alpine rock skink | Oligosoma aff. waimatense “alpine rock” | ≤89 | Inhabits boulderfields, scree and talus. | Threatened–Nationally Vulnerable |
Southern grass skink | Oligosoma aff. polychroma Clade 5 | ≤80 | Inhabits a range of grassy and rocky environments from the coast to alpine regions. | At Risk–Declining |
McCann’s skink | Oligosoma maccanni | ≤73 | Inhabits a range of grassy and rocky environments from lowland to alpine regions. | Not Threatened |
Nevis skink | Oligosoma toka | ≤71 | Inhabits high-altitude, rocky tussock grassland and scrubland, talus and rocky river terraces. | At Risk–Declining |
Rockhopper skink | Oligosoma “rockhopper” | ≤65 | Inhabits vegetated boulderfield and rocky herbfield. | At Risk–Declining |
Reaction Strength | Description |
---|---|
None | Did not move from the original location. |
Low | Moved or adjusted position but remained at the original location. |
Medium | Moved ≤ 30 cm from the original location. |
High | Moved > 30 cm from the original location. |
Variables | Df | AICc | ΔAIC | Weight |
---|---|---|---|---|
Species, wind | 6 | 29.38 | 0.00 | 0.34 |
Species, temp, wind | 7 | 29.76 | 0.38 | 0.28 |
Habitat, wind | 5 | 31.40 | 2.02 | 0.13 |
Species, temp, cloud, wind | 8 | 32.12 | 2.74 | 0.09 |
Habitat, temp, wind | 6 | 33.43 | 4.04 | 0.05 |
Species | 5 | 34.30 | 4.91 | 0.03 |
Habitat | 4 | 34.52 | 5.14 | 0.03 |
Habitat, temp, cloud, wind | 7 | 35.38 | 5.99 | 0.02 |
Species, temp | 6 | 36.00 | 6.61 | 0.01 |
Species, cloud | 6 | 36.10 | 6.72 | 0.01 |
Habitat, cloud | 5 | 36.72 | 7.34 | <0.01 |
Habitat, temp | 5 | 36.78 | 7.40 | <0.01 |
Null model | 2 | 47.98 | 18.60 | <0.01 |
Wind | 3 | 48.57 | 19.18 | <0.01 |
Temp | 3 | 49.75 | 20.36 | <0.01 |
Cloud | 3 | 50.13 | 20.75 | <0.01 |
Temp, cloud, wind | 5 | 52.02 | 22.64 | <0.01 |
Variables | Df | AIC | Delta | Weight |
---|---|---|---|---|
Habitat, survey method | 5 | 418.38 | 0 | 0.97 |
Survey method | 3 | 425.51 | 7.12 | 0.03 |
Habitat | 4 | 481.48 | 63.09 | <0.01 |
Null model | 2 | 488.61 | 70.22 | <0.01 |
Reaction strength | Drone | Visual |
---|---|---|
None | 37.5% (15) | 18.9% (27) |
Low | 20% (8) | 19.5% (28) |
Medium | 20% (8) | 30.1% (43) |
High | 22.5% (9) | 31.5% (45) |
Total | 40 | 143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidge, L.R.; Knox, C.D.; Monks, J.M. Flying towards the Future: Using Drones to Detect Lizards in Remote Alpine Terrain. Drones 2024, 8, 79. https://doi.org/10.3390/drones8030079
Davidge LR, Knox CD, Monks JM. Flying towards the Future: Using Drones to Detect Lizards in Remote Alpine Terrain. Drones. 2024; 8(3):79. https://doi.org/10.3390/drones8030079
Chicago/Turabian StyleDavidge, Lachlan Raphael, Carey Dylan Knox, and Joanne Marie Monks. 2024. "Flying towards the Future: Using Drones to Detect Lizards in Remote Alpine Terrain" Drones 8, no. 3: 79. https://doi.org/10.3390/drones8030079
APA StyleDavidge, L. R., Knox, C. D., & Monks, J. M. (2024). Flying towards the Future: Using Drones to Detect Lizards in Remote Alpine Terrain. Drones, 8(3), 79. https://doi.org/10.3390/drones8030079