Robust Optimization Models for Planning Drone Swarm Missions
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. Mission Network
3.2. Constraints for UAVs without Co-operation
- if the platform visits the vertex ; otherwise, it is 0;
- if the platform travels along an edge ; otherwise, it is 0;
- if the recognized object assigned to the edge is checked with the sensor ; otherwise, it is 0;
- is the arrival time of the platform to the waypoint ( means that UAV did not visit the vertex).
3.3. Flow Preservation Constraints
3.4. Constraints for the Swarm
3.4.1. The Flight of the Swarm within the Range of Data Link
3.4.2. Minimum and Maximum Flight Times over the Vertex
3.5. Optimization Goals
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANT | Ant colony optimization |
EO/IR | Electro-optical/Infra-red |
GA | Genetic Algorithm |
GCS | Ground Control Station |
PSO | Particle Swarm Optimization |
RRT | Rapidly exploring Random Tree |
SAR | Synthetic Aperture Radar |
TS | Tabu Search |
UAV | Unmanned Aerial Vehicle |
VRP | Vehicle Route Planning |
VRPTW | Vehicle Route Planning with Time Windows |
References
- Stecz, W.; Gromada, K. UAV Mission Planning with SAR Application. Sensors 2020, 20, 1080. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, D.; Zhang, Y.; Wang, X. A Complex Network Theory-Based Modeling Framework for Unmanned Aerial Vehicle Swarms. Sensors 2018, 18, 3434. [Google Scholar] [CrossRef] [PubMed]
- Bertsimas, D.; Sim, M. The Price of Robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Hu, C.; Lu, J.; Liu, X.; Zhang, G. Robust vehicle routing problem with hard time windows under demand and travel time uncertainty. Comput. Oper. Res. 2018, 94, 139–153. [Google Scholar] [CrossRef]
- Boskovic, J.; Prasanth, R.; Mehra, R. A multi-layer autonomous intelligent control architecture for unmanned aerial vehicles. J. Aerosp. Comput. Inf. Commun. 2004, 1, 605–628. [Google Scholar] [CrossRef]
- Zhou, Y.; Rao, B.; Wang, W. UAV Swarm Intelligence: Recent Advances and Future Trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
- Song, B.; Park, K.; Kim, J. Persistent UAV delivery logistics: MILP formulation and efficient heuristic. Comput. Ind. Eng. 2018, 120, 418–428. [Google Scholar] [CrossRef]
- Chung, S.; Sah, B.; Lee, J. Optimization for drone and drone-truck combined operations: A review of the state of the art and future directions. Comput. Oper. Res. 2020, 123, 105004. [Google Scholar] [CrossRef]
- Brand, M.; Masuda, M.; Wehner, N.; Yu, X.H. Ant colony optimization algorithm for robot path planning. In Proceedings of the 2010 International Conference On Computer Design and Applications, Qinhuangdao, China, 25–27 June 2010; pp. 436–440. [Google Scholar] [CrossRef]
- Butenko, S.; Murphey, R.; Pardalos, P. Cooperative Control: Models, Application and Alogorithms, 1st ed.; Kuwer Press: Noida, India, 2006. [Google Scholar]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Luo, R.; Zheng, H.; Guo, J. Solving the Multi-Functional Heterogeneous UAV Cooperative Mission Planning Problem Using Multi-Swarm Fruit Fly Optimization Algorithm. Sensors 2020, 20, 5026. [Google Scholar] [CrossRef]
- Singgih, I.; Lee, J.; Kim, B. Node and Edge Drone Surveillance Problem With Consideration of Required Observation Quality and Battery Replacement. IEEE Access 2020, 8, 44125–44139. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, Z.; Geng, N. A memetic algorithm with iterated local search for the capacitated arc routing problem. Int. J. Prod. Res. 2013, 51, 3075–3084. [Google Scholar] [CrossRef]
- Chow, J. Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy. Int. J. Transp. Sci. Technol. 2016, 5, 167–185. [Google Scholar] [CrossRef]
- Schneider, M. The vehicle-routing problem with time windows and driver-specific times. Eur. J. Oper. Res. 2016, 250, 101–119. [Google Scholar] [CrossRef]
- Lu, F.; Jiang, R.; Bi, H.; Gao, Z. Order Distribution and Routing Optimization for Takeout Delivery under Drone–Rider Joint Delivery Mode. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 774–796. [Google Scholar] [CrossRef]
- Lu, F.; Chen, W.; Feng, W.; Bi, H. 4PL routing problem using hybrid beetle swarm optimization. Soft Comput 2023, 27, 17011–17024. [Google Scholar] [CrossRef]
- Amine Masmoudi, M.; Mancini, S.; Baldacci, R.; Kuo, Y.H. Vehicle routing problems with drones equipped with multi-package payload compartments. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102757. [Google Scholar] [CrossRef]
- Gromada, K.; Stecz, W. Determining UAV Flight Trajectory for Target Recognition Using EO/IR and SAR. Sensors 2020, 20, 5712. [Google Scholar] [CrossRef]
- Lee, W.; Choi, G.H.; wan Kim, T. Visibility graph-based path-planning algorithm with quadtree representation. Appl. Ocean Res. 2021, 117, 102887. [Google Scholar] [CrossRef]
- Kelner, J.; Burzynski, W.; Stecz, W. Modeling UAV swarm flight trajectories using Rapidly-exploring Random Tree algorithm. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 101909. [Google Scholar] [CrossRef]
- Burzynski, W.; Stecz, W. Trajectory planning with multiplatform spacetime RRT*. Appl. Intell. 2024, 54, 9524–9541. [Google Scholar] [CrossRef]
- Williams, H. Model Building in Mathematical Programming, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lin, M.; Carlsson, J.; Ge, D.; Shi, J.; Tsai, J. A Review of Piecewise Linearization Methods. Math. Probl. Eng. 2013, 11, 1–8. [Google Scholar] [CrossRef]
- Soyster, A. Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 1973, 21, 1154–1157. [Google Scholar] [CrossRef]
- IBM. CPLEX; IBM: Armonk, NY, USA, 2023. [Google Scholar]
- Brucker, P. Scheduling Algorithms, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Brucker, P.; Knust, S. Complex Scheduling, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
Model No. | Type of | Set of |
---|---|---|
Optimization Function | Constraints | |
I | (25) | (1)–(7), (8)–(16), (17)–(22) |
II | (26) | (1)–(7), (8)–(16), (17)–(22) |
III | (27) | (1)–(7), (8)–(16), (17)–(24) |
Model No. | No. of | Small | Linear | Search Time | Opt. Gap | |
---|---|---|---|---|---|---|
Platforms | Targets | Targets | [s] | [%] | ||
I | 3 | 10 | 2 | 1 | <1 | 0.1 |
II | 3 | 10 | 2 | 1 | <1 | 0.1 |
III | 3 | 10 | 2 | 1 | <1 | 0.1 |
I | 3 | 20 | 4 | 1 | 40 | 5 |
I | 3 | 20 | 4 | 2 | 50 | 5 |
I | 4 | 20 | 4 | 1 | 80 | 5 |
II | 4 | 20 | 4 | 2 | 130 | 8 |
III | 4 | 20 | 4 | 1 | 310 | 8 |
I | 4 | 30 | 4 | 1 | 400 | 9 |
I | 4 | 30 | 4 | 2 | 410 | 10 |
II | 4 | 30 | 4 | 1 | 420 | 10 |
II | 4 | 30 | 4 | 2 | 440 | 10 |
III | 4 | 30 | 4 | 1 | 520 | 10 |
I | 4 | 40 | 4 | 1 | 660 | 25 |
II | 4 | 40 | 4 | 1 | 600 | 25 |
III | 4 | 40 | 4 | 1 | 670 | 25 |
I | 5 | 40 | 4 | 1 | 770 | 25 |
II | 5 | 40 | 4 | 1 | 780 | 25 |
III | 5 | 40 | 4 | 1 | 760 | 25 |
Model No. | No. of | Small | Linear | Search Time | Opt. Gap | |
---|---|---|---|---|---|---|
Platforms | Targets | Targets | [s] | [%] | ||
I | 4 | 30 | 4 | 1 | 340 | 9 |
I | 4 | 30 | 4 | 2 | 350 | 10 |
II | 4 | 30 | 4 | 2 | 380 | 10 |
I | 4 | 40 | 4 | 1 | 560 | 25 |
II | 4 | 40 | 4 | 1 | 510 | 25 |
III | 4 | 40 | 4 | 1 | 500 | 25 |
I | 5 | 40 | 4 | 1 | 690 | 25 |
II | 5 | 40 | 4 | 1 | 660 | 25 |
III | 5 | 40 | 4 | 1 | 670 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panowicz, R.; Stecz, W. Robust Optimization Models for Planning Drone Swarm Missions. Drones 2024, 8, 572. https://doi.org/10.3390/drones8100572
Panowicz R, Stecz W. Robust Optimization Models for Planning Drone Swarm Missions. Drones. 2024; 8(10):572. https://doi.org/10.3390/drones8100572
Chicago/Turabian StylePanowicz, Robert, and Wojciech Stecz. 2024. "Robust Optimization Models for Planning Drone Swarm Missions" Drones 8, no. 10: 572. https://doi.org/10.3390/drones8100572
APA StylePanowicz, R., & Stecz, W. (2024). Robust Optimization Models for Planning Drone Swarm Missions. Drones, 8(10), 572. https://doi.org/10.3390/drones8100572