UAV Hunter: A Net-Capturing UAV System with Improved Detection and Tracking Methods for Anti-UAV Defense
Abstract
:1. Introduction
2. Related Work
2.1. Anti-UAV Methods
2.2. UAV Detection and Tracking Technology
3. Overview of the Proposed Method
3.1. Hardware Framework
3.1.1. Net-Capturing UAV
3.1.2. Airborne Tether-Net Capture Device
3.2. Software Framework
3.2.1. UAV Navigation and Control Software
3.2.2. UAV Detection and Tracking Software
4. Experiments and Results
4.1. The Hardware-in-the-Loop Simulation Experiments for UAV Detection and Tracking
4.1.1. Results of UAV Detection Experiments
4.1.2. Results of UAV Tracking Experiments
4.1.3. Results of the Image Return Experiments
4.2. The Open-Environment Tests for UAV Net Capture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, X.; Xi, J.; Yang, X.; Lu, R.; Xia, W. STFTrack: Spatio-Temporal-Focused Siamese Network for Infrared UAV Tracking. Drones 2023, 7, 296–318. [Google Scholar] [CrossRef]
- Fan, J.; Yang, X.; Lu, R.; Xie, X.; Li, W. Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention. Drones 2021, 5, 68–82. [Google Scholar] [CrossRef]
- Zhao, M.; Xi, J.; Wang, L.; Xia, K.; Zheng, Y. Edge-Based Adaptive Secure Consensus for Nonlinear Multi-Agent Systems with Communication Link Attacks. Neurocomputing 2023, 551, 126505–126517. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, Y.; Li, T. Attacks on Formation Control for Multi-Agent Systems. IEEE Trans. Cybern. 2021, 52, 12805–12817. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.; Yu, W.; Hao, H.; Zhu, H. Research on Development of Vehicular High Power Microwave Weapons. In Proceedings of the International Conference on Man-Machine-Environment System Engineering, Beijing, China, 21–23 October 2022; pp. 336–342. [Google Scholar]
- Yasmine, G.; Maha, G.; Hicham, M. Survey on Current Anti-Drone Systems: Process, Technologies, and Algorithms. Int. J. Syst. Syst. Eng. 2022, 12, 235–270. [Google Scholar] [CrossRef]
- Luo, H.; Lu, Y. Status and Development Trend of Foreign Anti-UAV of Low, Slow and Small Capability. Aerosp. Technol. 2019, 06, 32–36. [Google Scholar]
- Zhou, Z.; Cheng, C.; Zhang, X.; Bian, W. Numerical Simulation and Optimization on Launching Process of an Anti-UAV Capture. J. Ballist. 2019, 31, 1–6. [Google Scholar]
- Jiang, N.; Wang, K.; Peng, X.; Yu, X.; Wang, Q.; Xing, J.; Li, G.; Guo, G.; Ye, Q.; Jiao, J.; et al. Anti-UAV: A Large-Scale Benchmark for Vision-Based UAV Tracking. IEEE Trans. Multimed. 2021, 25, 486–500. [Google Scholar] [CrossRef]
- Bo, C.; Wei, Y.; Wang, X.; Shi, Z.; Xiao, Y. Vision-Based Anti-UAV Detection Based on YOLOv7-GS in Complex Backgrounds. Drones 2024, 8, 331. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.; Li, D.; Wang, D. Vision-Based Anti-UAV Detection and Tracking. IEEE Trans. Intell. Transp. Syst. 2022, 23, 25323–25334. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, X.; Zheng, G.; Liu, X. Object Detection of UAV for Anti-UAV Based on Improved YOLO v3. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019; pp. 8386–8390. [Google Scholar]
- Zhang, J.; Lin, Y.; Zhou, X.; Shi, P.; Zhu, X.; Zeng, D. Precision in Pursuit: A Multi-consistency Joint Approach for Infrared Anti-UAV Tracking. Vis. Comput. 2024. [Google Scholar] [CrossRef]
- Huang, M.; Mi, W.; Wang, Y. EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model. Drones 2024, 8, 337. [Google Scholar] [CrossRef]
- Fang, H.; Liao, Z.; Wang, X.; Chang, Y.; Yan, L. Differentiated Attention Guided Network over Hierarchical and Aggregated Features for Intelligent UAV Surveillance. IEEE Trans. Ind. Inform. 2023, 19, 9909–9920. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, X.; Lu, R.; Xie, X.; Wang, S.; Su, S. Context-Aware DGCN-Based Ship Formation Recognition in Remote Sensing Images. Remote Sens. 2024, 16, 3435. [Google Scholar] [CrossRef]
- Xiang, H.; Liang, C.; Qiao, Z.; Yuan, X.; Cao, G. Parameters Simulation and Optimization of Flying Net for UAVs Interception. IEEE Access 2022, 10, 56668–56676. [Google Scholar] [CrossRef]
- Wei, Y.; Du, Z.; Chen, X.; Ma, R.; Shi, W. Dynamic Simulation Analysis of Net-capturing UAV Based on ABAQUS. J. Ordnance Equip. Eng. 2021, 42, 98–103. [Google Scholar]
- Wang, L.; Mi, S.; Song, Q. A Portable Anti-UAV Intelligent Interception Network System. China, CN105501436A, 20 April 2016. [Google Scholar]
- Su, G.; Xiao, Z.; Li, R. Shield Portable Anti-UAV Missile Soft Damage Recovery Device. China, CN106767172A, 31 May 2017. [Google Scholar]
- Garcia, A.; Lee, J.; Kim, D. Anti-drone System: A Visual-based Drone Detection using Neural Networks. In Proceedings of the International Conference on Information and Communication Technology Convergence, Jeju, Republic of Korea, 21–23 October 2020; pp. 559–561. [Google Scholar]
- Fang, G.; Yi, J.; Wan, X.; Liu, Y.; Ke, H. Experimental Research of Multi-static Passive Radar with a Single Antenna for Drone Detection. IEEE Access 2018, 6, 33542–33551. [Google Scholar] [CrossRef]
- Sabogal, A.; Gómez, M.; Ugarte, J. Heterogeneous Acoustic Features Space for Automatic Classification of Drone Audio Signals. In Proceedings of the 8th Workshop on Engineering Applications, Medellín, Colombia, 6–8 October 2021; pp. 97–109. [Google Scholar]
- Bosio, I.; Garibotto, C.; Lavagetto, F.; Scriarrone, A.; Zappatore, S. Unauthorized Amateur UAV Detection Based on WiFi Statistical Fingerprint Analysis. IEEE Commun. Mag. 2018, 56, 106–111. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.; Liao, H. YOLO V4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37. [Google Scholar]
- Fu, C.; Liu, W.; Ranga, A.; Berg, A. DSSD: Deconvolutional Single Shot Detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. CenterNet: Keypoint Triplets for Object Detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October−2 November 2019; pp. 6569–6578. [Google Scholar]
- Tang, J. Research on Vision-Based Detection and Tracking Technology for Small UAV. Master’s Thesis, Nanjing University of Science & Technology, Nanjing, China, 2022. [Google Scholar]
- Shi, Q. Design of UAV Intrusion Detection System Based on Machine Vision. Master’s Thesis, Guilin University of Electronic Technology, Guilin, China, 2021. [Google Scholar]
- Jing, X. A Master Thesis Submitted to University of Electronic Science and Technology of China. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. [Google Scholar]
- Zhang, R.; Li, N.; Zhang, X. Low-altitude UAV Detection Method Based on Optimized CenterNet. J. Beijing Univ. Aeronaut. Astronaut. 2021, 48, 2335–2344. [Google Scholar]
- Liu, P. Research on Low-Altitude UAV Target Detection Based on Improved SSD Detection Network. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar]
- Zhou, Q.; Xia, M. Research on Multi-UAV Detection Based on Improved SSD Algorithm. Inf. Technol. 2020, 4, 71–76. [Google Scholar]
- Ding, M.; Li, N.; Song, Z.; Zhang, R.; Zhang, X.; Zhou, H. A Lightweight Action Recognition Method for Unmanned-Aerial-Vehicle Video. In Proceedings of the IEEE 3rd International Conference on Electronics and Communication Engineering, Piscataway, NJ, USA, 14–16 December 2020; pp. 181–185. [Google Scholar]
- Long, X.; Deng, K.; Wang, G.; Zhang, Y.; Dang, Q.; Gao, Y. PP-YOLO: An Effective and Efficient Implementation of Object Detector. arXiv 2020, arXiv:2007.12099. [Google Scholar]
- Pan, S.; Tong, Z.; Zhao, Y.; Zhao, Z.; Su, F.; Zhuang, B. Multi-Object Tracking Hierarchically in Visual Data Taken from Drones. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 135–143. [Google Scholar]
- Khalkhali, M.; Vahedian, A.; Yazdi, S. Situation Assessment-Augmented Interactive Kalman filter for Multi-Vehicle Tracking. IEEE Trans. Intell. Transp. Syst. 2021, 23, 3766–3776. [Google Scholar] [CrossRef]
- Li, Y.; Fu, C.; Huang, Z.; Zhang, Y.; Pan, J. Intermittent Contextual Learning for Key Filter-Aware UAV Object Tracking using Deep Convolutional Feature. IEEE Trans. Multimed. 2020, 23, 810–822. [Google Scholar] [CrossRef]
- Li, S.; Yang, X.; Wang, X.; Zeng, D.; Ye, H.; Zhao, Q. Learning Target-Aware Vision Transformers for Real-Time UAV Tracking. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–18. [Google Scholar] [CrossRef]
- Fang, H.; Wu, C.; Wang, X.; Zhou, F.; Chang, Y.; Yan, L. Online Infrared UAV Target Tracking with Enhanced Context-Awareness and Pixel-Wise Attention Modulation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–17. [Google Scholar] [CrossRef]
- Sun, N.; Zhao, J.; Shi, Q.; Liu, C.; Liu, P. Moving Target Tracking by Unmanned Aerial Vehicle: A Survey and Taxonomy. IEEE Trans. Ind. Inform. 2024, 20, 7056–7068. [Google Scholar] [CrossRef]
- Gao, Y.; Gan, Z.; Chen, M.; Ma, H.; Mao, X. Hybrid Dual-Scale Neural Network Model for Tracking Complex Maneuvering UAVs. Drones 2024, 8, 3. [Google Scholar] [CrossRef]
- Wu, X.; Li, W.; Hong, D.; Ran, T.; Du, Q. Deep learning for Unmanned Aerial Vehicle-based Object Detection and Tracking: A Survey. IEEE Geosci. Remote Sens. Mag. 2021, 10, 91–124. [Google Scholar] [CrossRef]
- Osco, L.; Junior, J.; Ramos, A.; Jorge, L.; Fatholahi, S.; Silva, J.; Matsubara, E.; Pistori, H.; Goncalves, W.; Li, J. A Review on Deep Learning in UAV Remote Sensing. Int. J. Appl. Earth Obs. Geo-Inf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Srivastava, S.; Narayan, S.; Mittal, S. A Survey of Deep Learning Techniques for Vehicle Detection from UAV Images. J. Syst. Archit. 2021, 117, 102152. [Google Scholar] [CrossRef]
- Cazzato, D.; Cimarelli, C.; Sanchez, L.; Jose, L.; Voos, H.; Leo, M. A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicle. J. Imaging 2020, 6, 78–116. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Fu, C.; Lin, F.; Li, Y.; Lu, P. Training-set Distillation for Real time UAV Object Tracking. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France, 31 May–16 June 2020; pp. 9715–9721. [Google Scholar]
- Zhang, Y.; Sun, P.; Jiang, Y.; Yu, D.; Weng, F.; Yuan, Z.; Luo, P.; Liu, P.; Liu, W.; Wang, X. ByteTrack: Multi-Object Tracking by Associating Every Detection Box. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 24–28 October 2022; pp. 1–21. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. Unitbox: An Advanced Object Detection Network. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.; Chen, B.; Tan, M. Searching for Mobilenetv3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Ma, Y.; Yu, D.; Wu, T.; Wang, H. PaddlePaddle: An Open-Source Deep Learning Platform from Industrial Practice. Front. Data Comput. 2019, 1, 105–115. [Google Scholar]
Systems | Component List | Specification |
---|---|---|
Net-capturing UAV | Flight controller | CUAV-V5+ |
Electronic speed control | XRotor-40A | |
BLDC motors | X4112S | |
Digital transmission module | 3DR·V5-Radio | |
GNSS module | CUAV-NEO v2 | |
Batteries | TATTU-10000mAh-25C-22.2V-6S1P | |
Onboard computer | NVIDIA Jetson Xavier NX | |
Dual-mode sensor pod | SHD10T3 Visible-IR Pod | |
Remote controller | SIYI-MK15 |
Parameter/Method | YOLOv4 Tiny | YOLOv5 Tiny | YOLOv7 Tiny | Ours 1 |
---|---|---|---|---|
mAP (%) | 92.6 | 94.4 | 96.1 | 95.2 |
FPS | 27.3 | 32.8 | 34.3 | 42.5 |
Method | YOLOv4 Tiny | YOLOv5 Tiny | YOLOv7 Tiny | Ours 1 | ||||
---|---|---|---|---|---|---|---|---|
mAP | FPS | mAP | FPS | mAP | FPS | mAP | FPS | |
Clear Visibility | 92.6 | 27.3 | 94.4 | 32.8 | 96.1 | 34.3 | 95.2 | 42.5 |
Light Smoke Interference | 88.4 | 27.3 | 90.1 | 30.9 | 93.2 | 34.3 | 91.3 | 42.5 |
Heavy Smoke Interference | 81.2 | 27.1 | 82.9 | 29.9 | 88.4 | 33.6 | 84.7 | 41.8 |
Light Fog Interference | 87.3 | 27.4 | 89.7 | 32.6 | 92.7 | 34.0 | 90.1 | 42.3 |
Heavy Fog Interference | 80.7 | 26.9 | 82.6 | 31.1 | 89.9 | 32.8 | 87.5 | 41.6 |
Parameter/Method | Sort | Deep Sort | OC-Sort | ByteTrack | Ours 1 |
---|---|---|---|---|---|
MOTA % | 85.5 | 90.8 | 91.5 | 90.3 | 92.1 |
MOTP (IoU) | 0.822 | 0.925 | 0.937 | 0.932 | 0.938 |
FPS | 31.0 | 21.6 | 27.4 | 29.3 | 29.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Lu, R.; Yang, X.; Xie, X.; Fan, J.; Tang, B. UAV Hunter: A Net-Capturing UAV System with Improved Detection and Tracking Methods for Anti-UAV Defense. Drones 2024, 8, 573. https://doi.org/10.3390/drones8100573
Zhang T, Lu R, Yang X, Xie X, Fan J, Tang B. UAV Hunter: A Net-Capturing UAV System with Improved Detection and Tracking Methods for Anti-UAV Defense. Drones. 2024; 8(10):573. https://doi.org/10.3390/drones8100573
Chicago/Turabian StyleZhang, Tao, Ruitao Lu, Xiaogang Yang, Xueli Xie, Jiwei Fan, and Bin Tang. 2024. "UAV Hunter: A Net-Capturing UAV System with Improved Detection and Tracking Methods for Anti-UAV Defense" Drones 8, no. 10: 573. https://doi.org/10.3390/drones8100573
APA StyleZhang, T., Lu, R., Yang, X., Xie, X., Fan, J., & Tang, B. (2024). UAV Hunter: A Net-Capturing UAV System with Improved Detection and Tracking Methods for Anti-UAV Defense. Drones, 8(10), 573. https://doi.org/10.3390/drones8100573