Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images
Abstract
:1. Introduction
- A method for mapping the local salinity of agricultural fields with high resolution based on multispectral images obtained from UAVs is developed;
- In the course of development, the dataset was prepared, the possibility of applying machine learning algorithms of different types was investigated, the set of the model input parameters was optimized, and quantitative and qualitative comparison of the obtained results with the results of a similar model based on satellite data was performed.
- The next section gives examples of the use of UAVs to assess the salinity of agricultural fields;
- Section 3 describes the methodological scheme of the study, including the processes of data collection and processing, machine learning models, method of optimization of the set of input parameters, etc.;
- Section 4 discusses the obtained results;
- In the Conclusion Section, the advantages and limitations of the proposed method are presented, and further research tasks are formulated.
2. Related Works
3. Method
- Collection of soil samples and measurement of the electrical conductivity of the soil solution;
- Flight over the mapped area of the field with the help of a UAV equipped with a multispectral camera;
- Generation of field maps from overlapping images in different spectral ranges;
- Data pre-processing and calculation of spectral indices based on five spectral camera channels;
- Setting up a machine learning model;
- Salinity map calculation.
3.1. Preparation of the Dataset
3.2. Data Pre-Processing
3.3. Machine Learning Models
4. Results and Discussion
5. Conclusions
- Dependence on weather conditions, field humidity, illumination, presence of plants, etc.;
- UAV use is limited by weather conditions. Rain and strong winds make overflights ineffective or impossible.
- 3.
- A small number of ground measurements in one single day;
- 4.
- One kind of soil with little vegetation. However, for example, Reference [70] indicates that salinity estimation models may be different for bare ground and vegetated areas.
- 5.
- Additional verification of the method is required depending on the changes in weather conditions, soil moisture, presence of plants, etc.;
- 6.
- It is necessary to expand the area of field studies of fields and soils essentially different from those mentioned in this work. In particular, it is useful to carry out the analysis on sandy soils, which are very typical for the southern regions of Kazakhstan;
- 7.
- In general, despite the noted limitations, the described method of mapping of salinity of cultivated fields is quite accurate, operational and low-cost. Its wide application in the practice of precision farming requires relatively little effort to develop specialized software and unmanned flying platforms.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
File Suffix | Band Name | Center Wavelength (nm) | Bandwidth (nm) |
---|---|---|---|
1 | Blue | 475 | 32 |
2 | Green | 560 | 27 |
3 | Red | 668 | 14 |
4 | Red Edge | 717 | 12 |
5 | Near IR | 842 | 57 |
Appendix B
Sample Number | X | Y | Elco50 |
---|---|---|---|
1. | 265,440.44 | 4,828,020.66 | 0.37 |
2. | 265,453.74 | 4,828,017.08 | 1.59 |
3. | 265,462.59 | 4,828,013.66 | 0.74 |
4. | 265,471.53 | 4,828,010.34 | 0.82 |
5. | 265,478.13 | 4,828,007.00 | 0.58 |
6. | 265,486.98 | 4,828,003.57 | 0.51 |
7. | 265,495.84 | 4,828,000.15 | 0.77 |
8. | 265,506.85 | 4,827,993.65 | 2.6 |
9. | 265,513.44 | 4,827,990.30 | 2.33 |
10. | 265,524.56 | 4,827,986.80 | 2.92 |
11. | 265,533.53 | 4,827,986.49 | 3.24 |
12. | 265,544.64 | 4,827,982.99 | 2.45 |
13. | 265,551.43 | 4,827,982.75 | 2.51 |
14. | 265,562.47 | 4,827,979.36 | 4.11 |
15. | 265,569.25 | 4,827,979.12 | 3.28 |
16. | 265,578.11 | 4,827,975.70 | 2.97 |
17. | 265,589.33 | 4,827,975.31 | 0.43 |
18. | 265,657.99 | 4,828,269.49 | 3.23 |
19. | 265,661.22 | 4,828,297.17 | 4.68 |
20. | 265,656.91 | 4,828,303.44 | 2.1 |
21. | 265,655.08 | 4,828,315.85 | 1.78 |
22. | 265,653.12 | 4,828,322.14 | 1.54 |
23. | 265,646.66 | 4,828,331.60 | 2.16 |
24. | 265,642.65 | 4,828,344.08 | 2.68 |
25. | 265,638.12 | 4,828,344.24 | 4.65 |
26. | 265,633.90 | 4,828,350.62 | 4.22 |
27. | 265,629.70 | 4,828,359.99 | 2.86 |
28. | 265,627.66 | 4,828,366.29 | 4.27 |
29. | 265,621.27 | 4,828,375.74 | 5.11 |
30. | 265,575.63 | 4,827,969.56 | 0.15 |
31. | 265,577.57 | 4,827,960.26 | 0.82 |
32. | 265,579.51 | 4,827,950.97 | 2.23 |
33. | 265,581.25 | 4,827,938.56 | 1.15 |
34. | 265,581.04 | 4,827,932.34 | 1.95 |
35. | 265,582.98 | 4,827,923.04 | 1.67 |
36. | 265,584.91 | 4,827,913.63 | 1.94 |
37. | 265,586.74 | 4,827,901.23 | 1.61 |
38. | 265,590.97 | 4,827,894.96 | 1.68 |
39. | 265,592.80 | 4,827,882.56 | 2.17 |
40. | 265,592.47 | 4,827,873.23 | 1.73 |
41. | 265,596.68 | 4,827,863.85 | 1.48 |
42. | 265,598.53 | 4,827,854.55 | 2.4 |
43. | 265,600.47 | 4,827,845.15 | 1.65 |
44. | 265,602.41 | 4,827,835.85 | 0.78 |
45. | 265,604.24 | 4,827,823.44 | 1.09 |
46. | 265,608.35 | 4,827,813.96 | 0.65 |
47. | 265,610.18 | 4,827,801.55 | 0.54 |
48. | 265,612.12 | 4,827,792.25 | 0.8 |
49. | 265,614.06 | 4,827,782.95 | 0.41 |
50. | 265,613.74 | 4,827,773.62 | 0.8 |
51. | 265,617.86 | 4,827,764.25 | 0.95 |
52. | 265,608.89 | 4,827,764.56 | 1.11 |
53. | 265,599.71 | 4,827,758.66 | 0.66 |
54. | 265,588.38 | 4,827,756.05 | 0.3 |
55. | 265,579.31 | 4,827,753.25 | 0.39 |
56. | 265,568.08 | 4,827,753.65 | 0.33 |
57. | 265,556.75 | 4,827,750.93 | 0.52 |
58. | 265,559.33 | 4,827,760.07 | 0.24 |
59. | 265,557.39 | 4,827,769.48 | 0.22 |
60. | 265,555.56 | 4,827,781.88 | 0.21 |
61. | 265,551.44 | 4,827,791.26 | 0.22 |
62. | 265,549.51 | 4,827,800.67 | 0.18 |
63. | 265,549.83 | 4,827,809.89 | 0.25 |
64. | 265,547.89 | 4,827,819.18 | 0.41 |
65. | 265,546.04 | 4,827,828.59 | 0.34 |
66. | 265,539.68 | 4,827,841.15 | 0.32 |
67. | 265,540.12 | 4,827,853.48 | 0.52 |
68. | 265,536.00 | 4,827,862.86 | 0.5 |
69. | 265,534.17 | 4,827,875.26 | 0.47 |
70. | 265,532.23 | 4,827,884.67 | 0.73 |
71. | 265,530.29 | 4,827,893.97 | 0.47 |
72. | 265,528.54 | 4,827,906.37 | 0.51 |
73. | 265,524.34 | 4,827,915.75 | 0.44 |
74. | 265,522.41 | 4,827,925.16 | 0.53 |
75. | 265,520.47 | 4,827,934.46 | 2.64 |
76. | 265,518.61 | 4,827,943.75 | 4.08 |
77. | 265,514.52 | 4,827,956.24 | 4.78 |
78. | 265,512.58 | 4,827,965.65 | 3.82 |
79. | 265,510.72 | 4,827,974.94 | 2.14 |
80. | 265,508.79 | 4,827,984.24 | 2.23 |
Appendix C
No. | X | Y | SI1 | SI2 | SI3 | SI8 | WI1 | NDSI | SSRI | S1 | S2 | S3 | NDSIre | SI3re | SSRIre |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1581 | 7212 | 31,619.53 | 50,272.68 | 38,265.54 | 26,855.87 | 23,672.41 | 0.18 | 0.72 | 0.77 | −0.13 | 39,585.04 | −0.03 | 46,161.49 | 1.09 |
2 | 1768 | 7262 | 36,902.67 | 57,748.47 | 42,849.27 | 33,159.49 | 26,970.29 | 0.23 | 0.66 | 0.78 | −0.12 | 45,200.5 | −0.02 | 53,732.99 | 1.1 |
3 | 1893 | 7310 | 32,921.36 | 51,333.71 | 38,178.53 | 29,576.39 | 23,895.56 | 0.23 | 0.65 | 0.79 | −0.12 | 39,813.86 | −0.02 | 47,608.32 | 1.08 |
4 | 2019 | 7357 | 33,010.39 | 51,349.65 | 38,085.48 | 29,752.05 | 23,862.3 | 0.24 | 0.64 | 0.79 | −0.12 | 39,872.31 | −0.02 | 47,618.25 | 1.08 |
5 | 2111 | 7404 | 30,719.88 | 48,504.08 | 36,171.15 | 27,892.53 | 22,796.44 | 0.2 | 0.69 | 0.78 | −0.12 | 37,439.93 | −0.03 | 45,022.79 | 1.12 |
6 | 2236 | 7452 | 33,226.79 | 52,053.5 | 38,450.84 | 31,387.22 | 24,344.2 | 0.23 | 0.67 | 0.8 | −0.11 | 39,222.96 | −0.01 | 47,736.48 | 1.08 |
7 | 2360 | 7500 | 35,348.55 | 56,073.35 | 41,414.79 | 34,960.26 | 26,467.1 | 0.2 | 0.71 | 0.81 | −0.11 | 40,876.01 | 0 | 50,395.36 | 1.08 |
8 | 2515 | 7592 | 35,662.25 | 58,124.9 | 44,140.12 | 36,537.35 | 27,808.53 | 0.14 | 0.8 | 0.86 | −0.08 | 39,142.25 | 0 | 50,696.74 | 1.06 |
9 | 2608 | 7639 | 33,049.84 | 55,088.7 | 42,765.54 | 34,290.42 | 26,560.38 | 0.09 | 0.88 | 0.89 | −0.06 | 35,166.48 | 0 | 46,729.64 | 1.05 |
10 | 2764 | 7688 | 31,692.16 | 54,250.04 | 42,231.75 | 34,138.8 | 26,423.22 | 0.06 | 0.95 | 0.87 | −0.07 | 33,965.65 | −0.01 | 45,455.36 | 1.09 |
11 | 2891 | 7693 | 31,623.7 | 54,135.65 | 42,211.09 | 34,733.63 | 26,361.6 | 0.06 | 0.95 | 0.89 | −0.06 | 33,077.24 | 0 | 45,108.26 | 1.08 |
12 | 3047 | 7742 | 33,836.17 | 57,455.19 | 44,864.34 | 36,660.98 | 27,888.77 | 0.06 | 0.93 | 0.91 | −0.05 | 35,140.63 | −0.01 | 48,582.3 | 1.08 |
13 | 3142 | 7745 | 33,180.1 | 56,154.1 | 44,101.52 | 37,121.19 | 27,192.78 | 0.06 | 0.92 | 0.97 | −0.01 | 32,551.17 | −0.02 | 47,851.68 | 1.08 |
14 | 3298 | 7793 | 28,302.42 | 51,951.66 | 42,764.85 | 32,243.49 | 25,499.74 | −0.06 | 1.17 | 1.01 | 0 | 26,986.63 | −0.06 | 43,143.48 | 1.18 |
15 | 3393 | 7796 | 31,830.62 | 58,171.2 | 47,941.44 | 36,816.9 | 28,514.52 | −0.05 | 1.16 | 1.04 | 0.02 | 29,483.93 | −0.07 | 48,670.95 | 1.19 |
16 | 3518 | 7844 | 28,809.65 | 50,953 | 41,329 | 32,690.37 | 24,870.42 | −0.01 | 1.06 | 1.03 | 0.01 | 27,167.72 | −0.05 | 43,056.26 | 1.14 |
17 | 3676 | 7850 | 36,652.02 | 62,353.43 | 50,182.58 | 39,482.78 | 30,076.59 | 0.03 | 0.95 | 1.05 | 0.02 | 34,690.05 | −0.01 | 52,410.36 | 1.03 |
18 | 4641 | 3712 | 17,135.32 | 36,037.67 | 31,811.91 | 12,363.02 | 17,563.23 | −0.22 | 1.56 | 0.75 | −0.14 | 23,191.42 | −0.18 | 30,048.8 | 1.43 |
19 | 4687 | 3322 | 18,866.38 | 33,220.33 | 26,361.13 | 17,574.29 | 16,272.7 | 0.01 | 1.04 | 0.76 | −0.14 | 23,254.51 | −0.02 | 27,285.59 | 1.1 |
20 | 4626 | 3234 | 22,691.57 | 38,676.51 | 29,564 | 22,500.47 | 18,851.16 | 0.08 | 0.93 | 0.75 | −0.14 | 27,636.87 | −0.01 | 32,624.08 | 1.11 |
21 | 4600 | 3060 | 33,203.87 | 52,824.18 | 37,969.63 | 37,625.6 | 25,006.89 | 0.22 | 0.7 | 0.84 | −0.09 | 35,845.31 | 0.05 | 44,901.57 | 1.01 |
22 | 4573 | 2971 | 32,427.78 | 51,010.03 | 36,666.08 | 38,304.16 | 23,965.03 | 0.24 | 0.67 | 0.9 | −0.05 | 32,832.52 | 0.04 | 44,053.07 | 1 |
23 | 4482 | 2838 | 32,921.44 | 52,187.91 | 37,989.29 | 40,089.89 | 24,642.72 | 0.22 | 0.7 | 0.95 | −0.03 | 31,938.03 | 0.03 | 45,087.98 | 1.01 |
24 | 4426 | 2662 | 40,692.84 | 63,848.23 | 46,228.53 | 48,593.76 | 29,935.59 | 0.24 | 0.66 | 0.94 | −0.03 | 39,912.92 | 0.02 | 56,583.71 | 1.04 |
25 | 4362 | 2660 | 38,942.71 | 62,143.67 | 46,148.39 | 45,250.8 | 29,435.07 | 0.19 | 0.73 | 0.95 | −0.02 | 38,279.15 | 0.03 | 53,260.41 | 1 |
26 | 4302 | 2571 | 39,133.77 | 63,776.54 | 48,770.95 | 44,064.17 | 30,479.83 | 0.13 | 0.8 | 0.97 | −0.01 | 38,326.87 | 0.04 | 52,993.42 | 0.96 |
27 | 4243 | 2439 | 34,790.93 | 57,240.31 | 44,413.74 | 36,988.37 | 27,424.92 | 0.11 | 0.84 | 0.95 | −0.03 | 35,250.87 | 0.01 | 48,600.75 | 1.01 |
28 | 4215 | 2350 | 35,444.48 | 59,136.38 | 46,432.02 | 37,978.31 | 28,459.76 | 0.08 | 0.88 | 0.97 | −0.01 | 35,314.34 | 0 | 50,214.56 | 1.03 |
29 | 4125 | 2217 | 35,451.08 | 58,261.78 | 45,127.83 | 38,670.38 | 27,907.62 | 0.11 | 0.83 | 0.97 | −0.01 | 35,115.12 | 0.03 | 48,569.08 | 0.98 |
30 | 3483 | 7931 | 34,922.95 | 62,428.28 | 50,977.04 | 39,099.33 | 30,509.75 | −0.03 | 1.09 | 1.02 | 0.01 | 33,213.64 | −0.05 | 52,285.2 | 1.14 |
31 | 3510 | 8062 | 34,775.61 | 62,081.32 | 50,418.22 | 39,061.78 | 30,373.29 | −0.02 | 1.09 | 0.99 | 0 | 33,590.23 | −0.04 | 51,539.51 | 1.13 |
32 | 3537 | 8192 | 36,464.78 | 65,414.32 | 53,606.98 | 40,862.6 | 31,967.33 | −0.03 | 1.1 | 1.03 | 0.02 | 34,391.46 | −0.05 | 54,472.73 | 1.13 |
33 | 3562 | 8367 | 35,937.93 | 65,005.76 | 53,847.66 | 40,009.17 | 31,731.84 | −0.05 | 1.13 | 1.07 | 0.03 | 33,146.86 | −0.06 | 54,514.4 | 1.15 |
34 | 3559 | 8454 | 32,990.46 | 60,012.68 | 49,807.56 | 36,945.76 | 29,319.25 | −0.06 | 1.14 | 1.07 | 0.03 | 30,334.44 | −0.07 | 50,175.57 | 1.16 |
35 | 3586 | 8585 | 35,196.92 | 65,087.31 | 54,362.26 | 39,155.04 | 31,856.38 | −0.08 | 1.19 | 1.06 | 0.03 | 32,718.71 | −0.07 | 53,919.28 | 1.17 |
36 | 3613 | 8717 | 33,364.48 | 62,219.95 | 52,621.7 | 35,825.76 | 30,368.09 | −0.1 | 1.22 | 1.09 | 0.04 | 30,767.77 | −0.08 | 51,519.84 | 1.17 |
37 | 3639 | 8892 | 32,155.03 | 59,371.89 | 50,182.94 | 33,485.06 | 28,915.25 | −0.09 | 1.19 | 1.08 | 0.04 | 30,063.99 | −0.07 | 48,993.18 | 1.14 |
38 | 3699 | 8980 | 33,462.17 | 62,456.36 | 52,956.81 | 35,364.47 | 30,456.96 | −0.1 | 1.22 | 1.09 | 0.04 | 31,002.1 | −0.08 | 51,433.51 | 1.16 |
39 | 3724 | 9155 | 35,861.23 | 64,369.39 | 53,239.48 | 38,386.89 | 31,369.61 | −0.05 | 1.11 | 1.04 | 0.02 | 34,099.58 | −0.04 | 52,841.87 | 1.09 |
40 | 3720 | 9286 | 34,615.44 | 62,465.31 | 51,272.79 | 37,694.58 | 30,560.08 | −0.04 | 1.12 | 0.99 | 0 | 33,771.88 | −0.01 | 49,719.5 | 1.06 |
41 | 3779 | 9418 | 35,286.84 | 63,214.13 | 51,761.6 | 37,214.93 | 30,887.77 | −0.03 | 1.1 | 0.97 | −0.02 | 35,382.62 | −0.01 | 50,249.41 | 1.04 |
42 | 3805 | 9549 | 34,568.82 | 62,491.73 | 52,043.17 | 35,215.85 | 30,441.52 | −0.06 | 1.13 | 1.02 | 0.01 | 33,982.58 | −0.01 | 49,512.87 | 1.03 |
43 | 3832 | 9681 | 35,040.66 | 63,653.7 | 53,345.37 | 34,851.16 | 30,974.45 | −0.07 | 1.14 | 1.02 | 0.01 | 34,606.16 | −0.01 | 50,232.72 | 1.02 |
44 | 3860 | 9812 | 34,782.09 | 63,253.85 | 53,167.36 | 34,752.69 | 30,751.78 | −0.07 | 1.14 | 1.04 | 0.02 | 33,789.66 | −0.01 | 49,770.21 | 1.01 |
45 | 3885 | 9986 | 38,120.35 | 69,017.37 | 57,868.49 | 36,992.55 | 33,545.25 | −0.07 | 1.13 | 1.01 | 0.01 | 38,241.08 | −0.01 | 54,450.09 | 1.01 |
46 | 3943 | 10,120 | 38,509.9 | 69,106.52 | 58,017.35 | 37,339.58 | 33,476.99 | −0.06 | 1.1 | 1.05 | 0.02 | 37,753.44 | −0.01 | 54,989.23 | 0.99 |
47 | 3969 | 10,294 | 35,800.91 | 63,791.15 | 53,538.07 | 33,858.06 | 30,831.76 | −0.06 | 1.08 | 1.04 | 0.02 | 35,530.28 | −0.01 | 50,946.17 | 0.98 |
48 | 3996 | 10,425 | 35,597.9 | 63,462.99 | 53,268.57 | 33,265.45 | 30,677.29 | −0.06 | 1.08 | 1.03 | 0.01 | 35,773.19 | 0 | 50,621.33 | 0.98 |
49 | 4023 | 10,556 | 38,549.36 | 67,230.32 | 56,317.83 | 35,299.47 | 32,249.99 | −0.03 | 1.02 | 1.06 | 0.03 | 38,193.69 | 0 | 54,576.98 | 0.95 |
50 | 4019 | 10,687 | 34,644.84 | 61,485.42 | 51,746.9 | 31,698.76 | 29,633.54 | −0.05 | 1.07 | 1.04 | 0.02 | 34,787.35 | 0 | 49,270.19 | 0.97 |
51 | 4077 | 10,819 | 38,040.29 | 65,878.63 | 55,051.47 | 34,430.74 | 31,542.16 | −0.02 | 0.99 | 1.05 | 0.03 | 38,027.89 | 0 | 53,699.07 | 0.94 |
52 | 3951 | 10,814 | 34,619.85 | 61,563.29 | 51,782.52 | 31,708.75 | 29,701.74 | −0.06 | 1.08 | 1.03 | 0.01 | 34,962.26 | 0 | 49,198.57 | 0.97 |
53 | 3822 | 10,897 | 39,478.28 | 70,041.44 | 58,892.43 | 36,511.13 | 33,769.16 | −0.05 | 1.07 | 1.04 | 0.02 | 39,371.13 | 0 | 56,084.38 | 0.97 |
54 | 3662 | 10,934 | 39,081.14 | 68,990.71 | 57,838.46 | 36,107.53 | 33,247.39 | −0.05 | 1.05 | 1.04 | 0.02 | 39,172.71 | −0.01 | 55,624.08 | 0.97 |
55 | 3535 | 10,973 | 40,419.78 | 71,198.95 | 59,803.04 | 37,001.03 | 34,249.42 | −0.05 | 1.05 | 1.05 | 0.02 | 40,347.18 | −0.01 | 57,815.36 | 0.98 |
56 | 3377 | 10,968 | 35,463.97 | 61,632.84 | 51,616.5 | 32,955.44 | 29,522.39 | −0.03 | 1 | 1.08 | 0.04 | 34,420.53 | 0 | 50,266.59 | 0.95 |
57 | 3217 | 11,006 | 36,481.61 | 64,096.52 | 54,003.98 | 33,718.02 | 30,749.1 | −0.05 | 1.04 | 1.09 | 0.04 | 35,350.05 | −0.01 | 52,069.96 | 0.96 |
58 | 3254 | 10,878 | 35,799.66 | 62,853.58 | 52,727.18 | 33,399.75 | 30,213.9 | −0.04 | 1.04 | 1.07 | 0.03 | 35,042.66 | 0 | 50,885.24 | 0.96 |
59 | 3226 | 10,745 | 37,759.88 | 65,464.93 | 54,838.59 | 34,849.58 | 31,319.19 | −0.03 | 1 | 1.09 | 0.04 | 36,682.98 | 0 | 53,337.31 | 0.94 |
60 | 3201 | 10,571 | 40,116.97 | 70,115.71 | 58,824.09 | 37,563.27 | 33,638.85 | −0.04 | 1.02 | 1.09 | 0.04 | 38,759.64 | 0 | 56,880.92 | 0.95 |
61 | 3143 | 10,439 | 37,017.86 | 65,115 | 54,618.94 | 35,625.86 | 31,326.68 | −0.04 | 1.04 | 1.1 | 0.05 | 35,275.89 | 0 | 52,314.1 | 0.95 |
62 | 3115 | 10,307 | 38,557.66 | 67,637.52 | 56,604.5 | 37,226.06 | 32,541.46 | −0.04 | 1.03 | 1.09 | 0.04 | 36,822.72 | 0.01 | 54,252.12 | 0.95 |
63 | 3120 | 10,177 | 39,821.81 | 70,591.36 | 59,015.55 | 38,778.07 | 34,116.75 | −0.05 | 1.07 | 1.06 | 0.03 | 38,689.51 | 0 | 56,617.9 | 0.98 |
64 | 3093 | 10,046 | 39,456.76 | 70,135.38 | 58,423.89 | 38,395.82 | 33,982.11 | −0.05 | 1.08 | 1.02 | 0.01 | 39,213.12 | 0 | 55,857.15 | 0.98 |
65 | 3067 | 9914 | 38,455.8 | 68,614.93 | 57,187.06 | 38,477.1 | 33,280.44 | −0.05 | 1.09 | 1.04 | 0.02 | 37,363.75 | −0.01 | 54,696.65 | 1 |
66 | 2977 | 9737 | 41,507.14 | 74,130.67 | 61,961.22 | 41,722.18 | 35,923.95 | −0.05 | 1.09 | 1.07 | 0.03 | 39,695.05 | −0.01 | 59,209.85 | 1 |
67 | 2983 | 9564 | 43,112.79 | 76,763.88 | 63,652.19 | 44,378.2 | 37,283.02 | −0.04 | 1.08 | 1.04 | 0.02 | 41,486.4 | 0 | 61,252.62 | 1 |
68 | 2925 | 9432 | 39,722.92 | 72,508.87 | 60,892.84 | 40,011.76 | 35,301.2 | −0.08 | 1.15 | 1.04 | 0.02 | 38,728.58 | −0.03 | 57,807.88 | 1.05 |
69 | 2900 | 9257 | 40,703.27 | 72,467.76 | 59,899.03 | 42,870.42 | 35,236.98 | −0.04 | 1.08 | 1.05 | 0.02 | 38,807.26 | −0.01 | 58,146.09 | 1.02 |
70 | 2872 | 9125 | 36,047.26 | 64,656.78 | 53,378.15 | 38,254.48 | 31,522.96 | −0.04 | 1.1 | 1.02 | 0.01 | 34,800.43 | −0.02 | 51,999.33 | 1.05 |
71 | 2845 | 8994 | 40,354.28 | 70,899.66 | 58,008.27 | 43,454.24 | 34,445.19 | −0.02 | 1.04 | 1.04 | 0.02 | 38,242.59 | −0.01 | 57,951.21 | 1.04 |
72 | 2820 | 8820 | 40,181.84 | 68,540.23 | 55,148.86 | 43,967.28 | 33,100.71 | 0.03 | 0.95 | 1.05 | 0.03 | 37,672.72 | −0.01 | 57,608.12 | 1.04 |
73 | 2761 | 8688 | 37,574.88 | 62,579.63 | 49,616.42 | 41,335.21 | 30,017.73 | 0.07 | 0.88 | 1.05 | 0.03 | 35,186.03 | −0.02 | 54,185.48 | 1.05 |
74 | 2734 | 8555 | 37,664.32 | 61,185.91 | 47,313.63 | 41,928.11 | 29,128.25 | 0.13 | 0.8 | 1.02 | 0.01 | 35,898.03 | −0.02 | 54,462.54 | 1.07 |
75 | 2707 | 8425 | 38,269.51 | 61,302.54 | 46,459.25 | 42,898.79 | 29,036.6 | 0.17 | 0.75 | 0.98 | −0.01 | 37,286.34 | −0.02 | 55,150.67 | 1.08 |
76 | 2681 | 8294 | 37,392.37 | 60,150.85 | 45,227.45 | 42,530.39 | 28,597.92 | 0.17 | 0.76 | 0.95 | −0.02 | 36,975.98 | −0.01 | 53,642.44 | 1.08 |
77 | 2623 | 8118 | 29,107.63 | 47,998.65 | 37,013.66 | 32,611.44 | 23,050.11 | 0.11 | 0.84 | 0.97 | −0.02 | 28,635.93 | −0.02 | 42,260.48 | 1.1 |
78 | 2596 | 7986 | 30,821.13 | 49,796.85 | 38,004.57 | 33,595.66 | 23,687.6 | 0.15 | 0.78 | 0.96 | −0.02 | 30,818.83 | −0.01 | 44,070.66 | 1.06 |
79 | 2570 | 7855 | 31,888.41 | 52,176.3 | 40,028.92 | 33,969.96 | 24,977.03 | 0.12 | 0.82 | 0.92 | −0.04 | 32,971.84 | 0 | 45,374.85 | 1.06 |
80 | 2543 | 7724 | 35,226.8 | 57,560.92 | 44,143.08 | 36,437.63 | 27,536.38 | 0.13 | 0.81 | 0.9 | −0.05 | 37,451.61 | 0 | 49,713.54 | 1.04 |
References
- Hossain, M.S. Present Scenario of Global Salt Affected Soils, Its Management and Importance of Salinity Research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of Salt-Induced Land Degradation and Restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Guo, Z. Assessment for Salinized Wasteland Expansion and Land Use Change Using GIS and Remote Sensing in the West Part of Northeast China. Environ. Monit. Assess. 2007, 131, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Toderich, K.; Khuzhanazarov, T.; Ibrayeva, M.; Toreshov, P.; Bozaeva, J.; Konyushkova, M.; Krenke, A. Innovative Approaches and Technologies to Manage Salinization of Marginal Lands in Central Asia 2022. Textbook. Nur-Sultan, FAO (In Russian). Available online: https://www.fao.org/3/cb9685ru/cb9685ru.pdf (accessed on 24 May 2023).
- About 85% of Soils in Kyzylorda Oblast Are Saline. Available online: https://eldala.kz/novosti/kazahstan/5735-v-kyzylordinskoy-oblasti-zasoleny-okolo-85-pochv (accessed on 2 May 2023).
- Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine Learning-Based Detection of Soil Salinity in an Arid Desert Region, Northwest China: A Comparison between Landsat-8 Oli and Sentinel-2 MSI. Sci. Total Environ. 2020, 707, 136092. [Google Scholar] [CrossRef]
- Fan, X.; Weng, Y.; Tao, J. Towards Decadal Soil Salinity Mapping Using Landsat Time Series Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 32–41. [Google Scholar] [CrossRef]
- Qu, Y.H.; Duan, X.L.; Gao, H.Y.; Chen, A.P.; An, Y.Q.; Song, J.L.; Zhou, H.M.; He, T. Quantitative Retrieval of Soil Salinity Using Hyperspectral Data in the Region of Inner Mongolia Hetao Irrigation District. Spectrosc. Spectr. Anal. 2009, 29, 1362–1366. [Google Scholar]
- Fallah Shamsi, S.R.; Zare, S.; Abtahi, S.A. Soil Salinity Characteristics Using Moderate Resolution Imaging Spectroradiometer (MODIS) Images and Statistical Analysis. Arch. Agron. Soil Sci. 2013, 59, 471–489. [Google Scholar] [CrossRef]
- Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil Salinity Mapping Using Dual-Polarized SAR Sentinel-1 Imagery. Int. J. Remote Sens. 2018, 40, 237–252. [Google Scholar] [CrossRef]
- Grissa, M.; Abdelfattah, R.; Mercier, G.; Zribi, M.; Chahbi, A.; Lili-Chabaane, Z. Empirical Model for Soil Salinity Mapping from SAR Data. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011. [Google Scholar]
- Hoa, P.; Giang, N.; Binh, N.; Hai, L.; Pham, T.-D.; Hasanlou, M.; Tien Bui, D. Soil Salinity Mapping Using SAR Sentinel-1 Data and Advanced Machine Learning Algorithms: A Case Study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sens. 2019, 11, 128. [Google Scholar] [CrossRef]
- Ma, G.; Ding, J.; Han, L.; Zhang, Z.; Ran, S. Digital Mapping of Soil Salinization Based on Sentinel-1 and Sentinel-2 Data Combined with Machine Learning Algorithms. Reg. Sustain. 2021, 2, 177–188. [Google Scholar] [CrossRef]
- Mohamed, S.A.; Metwaly, M.M.; Metwalli, M.R.; AbdelRahman, M.A.; Badreldin, N. Integrating Active and Passive Remote Sensing Data for Mapping Soil Salinity Using Machine Learning and Feature Selection Approaches in Arid Regions. Remote Sens. 2023, 15, 1751. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K.; et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Tripathi, A.; Tiwari, R.K. A Simplified Subsurface Soil Salinity Estimation Using Synergy of Sentinel-1 Sar and Sentinel-2 Multispectral Satellite Data, for Early Stages of Wheat Crop Growth in Rupnagar, Punjab, India. Land Degrad. Dev. 2021, 32, 3905–3919. [Google Scholar] [CrossRef]
- Nurmemet, I.; Ghulam, A.; Tiyip, T.; Elkadiri, R.; Ding, J.-L.; Maimaitiyiming, M.; Abliz, A.; Sawut, M.; Zhang, F.; Abliz, A.; et al. Monitoring Soil Salinization in Keriya River Basin, Northwestern China Using Passive Reflective and Active Microwave Remote Sensing Data. Remote Sens. 2015, 7, 8803–8829. [Google Scholar] [CrossRef]
- Guan, Y.; Grote, K.; Schott, J.; Leverett, K. Prediction of Soil Water Content and Electrical Conductivity Using Random Forest Methods with UAV Multispectral and Ground-Coupled Geophysical Data. Remote Sens. 2022, 14, 1023. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Zaitseva, E.; Bekbotayeva, A.; Yakunin, K.; Assanov, I.; Levashenko, V.; Popova, Y.; Akzhalova, A.; et al. Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country. Appl. Sci. 2021, 11, 10171. [Google Scholar] [CrossRef]
- Dorofeeva, A.; Ponomarenko, E.; Fomina, E.; Lukyanova, Y.; Buchatskiy, P. High Precision Unmanned Agro Copters In Eco-Friendly Viticulture Systems. CEUR Workshop Proc. 2021, 2914, 299–306. [Google Scholar]
- Izmaylov, A.; Lobachevskiy, P.; Smirnov, I.; Kolesnikova, V.; Marchenko, L. Substantiation of parameters of unmanned aerial vehicles for pesticides and fertilizers application in precision farming system. Mech. Agric. Conserv. Resour. 2017, 63, 168–170. [Google Scholar]
- Su, J.; Yi, D.; Coombes, M.; Liu, C.; Zhai, X.; McDonald-Maier, K.; Chen, W.-H. Spectral Analysis and Mapping of Blackgrass Weed by Leveraging Machine Learning and UAV Multispectral Imagery. Comput. Electron. Agric. 2022, 192, 106621. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep Learning Techniques to Classify Agricultural Crops through UAV Imagery: A Review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef]
- Castrignanò, A.; Belmonte, A.; Antelmi, I.; Quarto, R.; Quarto, F.; Shaddad, S.; Sion, V.; Muolo, M.R.; Ranieri, N.A.; Gadaleta, G.; et al. Semi-Automatic Method for Early Detection of Xylella Fastidiosa in Olive Trees Using UAV Multispectral Imagery and Geostatistical-Discriminant Analysis. Remote Sens. 2020, 13, 14. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.; Dmitrieva, G. Plant Physiology, 4th ed.; Springer Science & Business Media: New York, NY, USA, 2012; Volume 2. (In Russian) [Google Scholar]
- Richards, L. Diagnosis and Improvement of Saline and Alkali Soils; Agriculture Handbook No. 60; LWW: Philadelphia, PA, USA, 1954. [Google Scholar]
- Measuring Soil Salinity. Available online: https://www.agric.wa.gov.au/soil-salinity/measuring-soil-salinity (accessed on 3 May 2023).
- Singh, A.N.; Dwivedi, R.S. Delineation of Salt-Affected Soils through Digital Analysis of Landsat MSS Data. Int. J. Remote Sens. 1989, 10, 83–92. [Google Scholar] [CrossRef]
- Vermeulen, D.; Van Niekerk, A. Machine Learning Performance for Predicting Soil Salinity Using Different Combinations of Geomorphometric Covariates. Geoderma 2017, 299, 1–12. [Google Scholar] [CrossRef]
- Gorji, T.; Yildirim, A.; Sertel, E.; Tanik, A. Remote Sensing Approaches and Mapping Methods for Monitoring Soil Salinity under Different Climate Regimes. Int. J. Environ. Geoinform. 2019, 6, 33–49. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Yakunin, K.; Yelis, M. From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review. Appl. Sci. 2021, 11, 5541. [Google Scholar] [CrossRef]
- Yang, N.; Yang, S.; Cui, W.; Zhang, Z.; Zhang, J.; Chen, J.; Ma, Y.; Lao, C.; Song, Z.; Chen, Y. Effect of Spring Irrigation on Soil Salinity Monitoring with UAV-Borne Multispectral Sensor. Int. J. Remote Sens. 2021, 42, 8952–8978. [Google Scholar] [CrossRef]
- Wang, D.; Chen, H.; Wang, G.; Cong, J.; Wang, X.; Wei, X. Salinity Inversion of Severe Saline Soil in the Yellow River Estuary Based on UAV Multi-Spectra. Sci. Agric. Sin. 2019, 52, 1698–1709. [Google Scholar]
- Wei, G.; Li, Y.; Zhang, Z.; Chen, Y.; Chen, J.; Yao, Z.; Lao, C.; Chen, H. Estimation of Soil Salt Content by Combining UAV-Borne Multispectral Sensor and Machine Learning Algorithms. PeerJ 2020, 8, e9087. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.; Zhang, H.; Cui, J.; Ma, W.; Zhang, L.; Li, G. Estimating Soil Salinity under Sunflower Cover in the Hetao Irrigation District Based on Unmanned Aerial Vehicle Remote Sensing. Land Degrad. Dev. 2022, 34, 84–97. [Google Scholar] [CrossRef]
- Zhu, C.; Ding, J.; Zhang, Z.; Wang, Z. Exploring the Potential of UAV Hyperspectral Image for Estimating Soil Salinity: Effects of Optimal Band Combination Algorithm and Random Forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121416. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, B.; Li, X.; Kang, X.; Wan, H.; Shi, X.; Li, Q.; Xue, Y.; Hu, X. Inversion of soil salinity in China’s Yellow River Delta using unmanned aerial vehicle multispectral technique. Environ. Monit. Assess. 2023, 195, 245. [Google Scholar] [CrossRef]
- Hu, J.; Peng, J.; Zhou, Y.; Xu, D.; Zhao, R.; Jiang, Q.; Fu, T.; Wang, F.; Shi, Z. Quantitative Estimation of Soil Salinity Using UAV-Borne Hyperspectral and Satellite Multispectral Images. Remote Sens. 2019, 11, 736. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Singh, A.K.; Singh, D. An Object Based Image Analysis of Multispectral Satellite and Drone Images for Precision Agriculture Monitoring. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022. [Google Scholar]
- Xie, L.; Feng, X.; Zhang, C.; Dong, Y.; Huang, J.; Cheng, J. A Framework for Soil Salinity Monitoring in Coastal Wetland Reclamation Areas Based on Combined Unmanned Aerial Vehicle (UAV) Data and Satellite Data. Drones 2022, 6, 257. [Google Scholar] [CrossRef]
- Dindaroğlu, T.; Kılıç, M.; Günal, E.; Gündoğan, R.; Akay, A.E.; Seleiman, M. Multispectral UAV and Satellite Images for Digital Soil Modeling with Gradient Descent Boosting and Artificial Neural Network. Earth Sci. Inform. 2022, 15, 2239–2263. [Google Scholar] [CrossRef]
- Zhang, Z.; Niu, B.; Li, X.; Kang, X.; Hu, Z. Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2a Multispectral Imagery in the Coastal Area, China. Land 2022, 11, 2307. [Google Scholar] [CrossRef]
- Agricultural Drone Mapping: Crop Protection and Production. Available online: https://www.pix4d.com/industry/agriculture (accessed on 3 May 2023).
- Khan, N.; Rastoskuev, V.; Shalina, E.; Sato, Y. Mapping Salt-Affected Soils Using Remote Sensing Indicators—A Simple Approach with the Use of GIS IDRISI. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of Slightly and Moderately Saline and Sodic Soils in Irrigated Agricultural Land Using Simulated Data of Advanced Land Imaging (EO-1) Sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Abbas, A.; Khan, S. Using Remote Sensing Techniques for Appraisal of Irrigated Soil Salinity. In Proceedings of the International Congress on Modelling and Simulation (MODSIM), Christchurch, New Zealand, 10–13 December 2007; pp. 2632–2638. [Google Scholar]
- Tripathi, N.; Rai, B.; Dwivedi, P. Spatial Modeling of Soil Alkalinity in GIS Environment Using IRS Data. In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997. [Google Scholar]
- Douaoui, A.E.; Nicolas, H.; Walter, C. Detecting Salinity Hazards within a Semiarid Context by Means of Combining Soil and Remote-Sensing Data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of Hydrosaline Land Degradation by Using a Simple Approach of Remote Sensing Indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Tivianton, T.A.; Kurnia, R. Detection of Cropland Salinization with Vegetation Index in Various Coastal Condition. IOP Conf. Ser. Earth Environ. Sci. 2019, 256, 012051. [Google Scholar] [CrossRef]
- Yu, X.; Chang, C.; Song, J.; Zhuge, Y.; Wang, A. Precise Monitoring of Soil Salinity in China’s Yellow River Delta Using UAV-Borne Multispectral Imagery and a Soil Salinity Retrieval Index. Sensors 2022, 22, 546. [Google Scholar] [CrossRef] [PubMed]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Daoud, E. Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset. World Academy of Science, Engineering and Technology, Open Science Index 145. Int. J. Comput. Inf. Eng. 2019, 13, 6–10. [Google Scholar]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A Comparative Analysis of Gradient Boosting Algorithms. Artif. Intell. Rev. 2020, 54, 1937–1967. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Yu, H.-F.; Huang, F.-L.; Lin, C.-J. Dual Coordinate Descent Methods for Logistic Regression and Maximum Entropy Models. Mach. Learn. 2010, 85, 41–75. [Google Scholar] [CrossRef]
- Santosa, F.; Symes, W.W. Linear Inversion of Band-Limited Reflection Seismograms. SIAM J. Sci. Stat. Comput. 1986, 7, 1307–1330. [Google Scholar] [CrossRef]
- Tichonov, A.N. Numerical Methods for the Solution of Ill-Posed Problems; Kluwer: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Applications to Nonorthogonal Problems. Technometrics 1970, 12, 69–82. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection via the Elastic Net. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Kuchin, Y.; Amirgaliyev, Y.; Yunicheva, N.; Muhamedijeva, E. Estimation of Filtration Properties of Host Rocks in Sandstone-Type Uranium Deposits Using Machine Learning Methods. IEEE Access 2022, 10, 18855–18872. [Google Scholar] [CrossRef]
- Raschka, S. MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python’s Scientific Computing Stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Raschka, S. Available online: https://rasbt.github.io/mlxtend/ (accessed on 3 May 2023).
- Zhao, W.; Zhou, C.; Zhou, C.; Ma, H.; Wang, Z. Soil Salinity Inversion Model of Oasis in Arid Area Based on UAV Multispectral Remote Sensing. Remote Sens. 2022, 14, 1804. [Google Scholar] [CrossRef]
- What Is the Center Wavelength and Bandwidth of Each Filter for MicaSense-Sensors. Available online: https://support.micasense.com/hc/en-us/articles/214878778 (accessed on 3 May 2023).
Salinity Class | EC1:5 Range for Loams (dS/m) | Effect on Crop Growth | Types of Crops Growing at a Given Level of Salinity |
---|---|---|---|
Non-saline | 0–0.18 | Minor | All grains except corn, vetch, alfalfa |
Slightly saline | 0.19–0.36 | Yields of salinity-sensitive crops may decrease | Cotton, timothy, hedgehog, melilot, wheat |
Moderately saline | 0.37–0.72 | Yields of most crops decrease | rutabaga, fodder cabbage, wheatgrass, sorghum |
Highly saline | 0.73–1.45 | Only salt-tolerant crops can give a satisfactory yield | sugar beets, sunflowers, western couch grass, French ryegrass, awnless bromegrass |
Extremely saline | 1.46–2.90 | Only some of the most salt-tolerant crops can produce a satisfactory yield | |
Extremely saline | >2.90 |
Spectral Indices | Ref. |
---|---|
[46] | |
[47] | |
[47] | |
[47] | |
[48] | |
[49] | |
[50] | |
[51] | |
[52] | |
[53] | |
* | |
* | |
* |
Regression Model | Abbreviation | References |
---|---|---|
XGBoost | XGB | [56] |
LightGBM | LGBM | [57,58,59] |
Random forest | RF | [60] |
Support vector machines | SVM | [61] |
Linear regression | LR | [62] |
Lasso regression | Lasso | [63] |
Ridge regression | Ridge | [64,65] |
Elastic net | ElasticNet | [66] |
Accuracy Index | Abbreviation | Equation | Explanation |
---|---|---|---|
Determination coefficient | where is the actual value; is the estimated value (hypothesis function value) for the i-th sample; and is a part of the training sample (the set of marked objects). | ||
Mean Absolute Error | MAE | where n is simple size; when evaluating the performance of the model on the test set, n is the size of the test set. | |
Mean squared error | MSE |
Regressor | MAE | MSE | VarMAE | VarMSE | Duration | ||
---|---|---|---|---|---|---|---|
XGB | 0.538 | 0.586 | 0.663 | 0.028 | 0.147 | 0.02 | 12.40934 |
RF | 0.577 | 0.695 | 0.575 | 0.026 | 0.141 | 0.04 | 4.963758 |
LR | 0.956 | 2.684 | −0.749 | 0.094 | 13.405 | 6.872 | 0.112692 |
Lasso | 1.131 | 1.864 | −0.131 | 0.031 | 0.403 | 0.075 | 0.092753 |
ElasticNet | 1.131 | 1.864 | −0.131 | 0.031 | 0.403 | 0.075 | 0.08577 |
LGBM | 0.738 | 1.03 | 0.384 | 0.031 | 0.236 | 0.037 | 2.12528 |
Ridge | 0.795 | 1.141 | 0.328 | 0.034 | 0.302 | 0.034 | 0.16456 |
SVM | 0.545 | 0.587 | 0.643 | 0.017 | 0.103 | 0.027 | 0.107743 |
Regressor | MAE | MSE | VarMAE | VarMSE | Duration | ||
---|---|---|---|---|---|---|---|
XGB | 0.514 | 0.508 | 0.701 * | 0.014 | 0.051 | 0.012 | 65.93539 |
RF | 0.562 | 0.641 | 0.597 | 0.02 | 0.09 | 0.037 | 11.2957 |
LR | 0.808 | 1.171 | 0.233 | 0.03 | 0.299 | 0.202 | 0.165049 |
Lasso | 1.112 | 1.782 | −0.099 | 0.029 | 0.317 | 0.036 | 0.159441 |
ElasticNet | 1.112 | 1.782 | −0.099 | 0.029 | 0.317 | 0.036 | 0.164228 |
LGBM | 0.716 | 0.947 | 0.421 | 0.026 | 0.15 | 0.024 | 3.062773 |
Ridge | 0.841 | 1.2 | 0.272 | 0.029 | 0.237 | 0.028 | 0.346673 |
SVM | 0.547 | 0.604 | 0.623 | 0.017 | 0.078 | 0.025 | 0.220766 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamediev, R.; Amirgaliyev, Y.; Kuchin, Y.; Aubakirov, M.; Terekhov, A.; Merembayev, T.; Yelis, M.; Zaitseva, E.; Levashenko, V.; Popova, Y.; et al. Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images. Drones 2023, 7, 357. https://doi.org/10.3390/drones7060357
Mukhamediev R, Amirgaliyev Y, Kuchin Y, Aubakirov M, Terekhov A, Merembayev T, Yelis M, Zaitseva E, Levashenko V, Popova Y, et al. Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images. Drones. 2023; 7(6):357. https://doi.org/10.3390/drones7060357
Chicago/Turabian StyleMukhamediev, Ravil, Yedilkhan Amirgaliyev, Yan Kuchin, Margulan Aubakirov, Alexei Terekhov, Timur Merembayev, Marina Yelis, Elena Zaitseva, Vitaly Levashenko, Yelena Popova, and et al. 2023. "Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images" Drones 7, no. 6: 357. https://doi.org/10.3390/drones7060357
APA StyleMukhamediev, R., Amirgaliyev, Y., Kuchin, Y., Aubakirov, M., Terekhov, A., Merembayev, T., Yelis, M., Zaitseva, E., Levashenko, V., Popova, Y., Symagulov, A., & Tabynbayeva, L. (2023). Operational Mapping of Salinization Areas in Agricultural Fields Using Machine Learning Models Based on Low-Altitude Multispectral Images. Drones, 7(6), 357. https://doi.org/10.3390/drones7060357