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Abstract: Salinization of cultivated soil is an important negative factor that reduces crop yields. Ob-
taining accurate and timely data on the salinity of soil horizons allows for planning the agrotechnical
measures to reduce this negative impact. The method of soil salinity mapping of the 0–30 cm layer
on irrigated arable land with the help of multispectral data received from the UAV is described in
this article. The research was carried out in the south of the Almaty region of Kazakhstan. In May
2022, 80 soil samples were taken from the ground survey, and overflight of two adjacent fields was
performed. The flight was carried out using a UAV equipped with a multispectral camera. The data
preprocessing method is proposed herein, and several machine learning algorithms are compared
(XGBoost, LightGBM, random forest, support vector machines, ridge regression, elastic net, etc.).
Machine learning methods provided regression reconstruction to predict the electrical conductivity
of the 0–30 cm soil layer based on an optimized list of spectral indices. The XGB regressor model
showed the best quality results: the coefficient of determination was 0.701, the mean-squared error
was 0.508, and the mean absolute error was 0.514. A comparison with the results obtained based on
Landsat 8 data using a similar model was performed. Soil salinity mapping using UAVs provides
much better spatial detailing than satellite data and has the possibility of an arbitrary selection of the
survey time, less dependence on the conditions of cloud cover, and a comparable degree of accuracy
of estimates.

Keywords: soil salinity; unmanned aerial vehicle; spectral indexes; machine learning; XGBoost;
LightGBM; random forest; support vector machines; ridge regression; elastic net

1. Introduction

Soil salinity is the most important factor reducing the productivity of agricultural
production. The paper [1] concludes that salinization covers up to 20% of the world irrigated
lands’ stock. Moreover, according to the data of [2], for the last 30 years, the amount of
land exposed to salinization has increased by 2.4 times. Climate change and anthropogenic
factors causing a sharp increase in the use of soil and water resources lead to increased
salinity and land degradation, especially in arid regions [3]. The lands of Central Asia,
including southern Kazakhstan, are clear examples of such negative changes [4], associated
with reduced availability of irrigation water and adverse environmental conditions. For
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example, in Kyzylorda region of Kazakhstan, almost 85% (20.3 million ha) of the total land
area (22.6 million ha) is salinized [5]. The same problem of soil salinity is observed in the
southern part of the United States, the northern regions of China, and so on. Although
the salts in low concentrations are not toxic to plants, when the concentration increases,
they cause osmotic stress, preventing the flow of water entering the roots of plants. The
consequence is physiological drought, leading to the death of the plants. In addition, at
high concentrations of salts. ionic homeostasis is disrupted, which has a toxic effect and is
a no less important cause of plant death.

Soil mapping is necessary to identify the centers of salinity and to plan the necessary
agrotechnical measures.

Traditionally, to perform such mapping, remote sensing data of the Earth’s surface
of the optical range [6,7], hyperspectral [8], multispectral [9], and radar data [10–12] are
used. These data are in various ways “connected” with the results of land-based studies of
salinity. Due to the labor-intensive nature of expeditions and laboratory measurements, the
volume of ground-based data is usually very limited [12–14], in rare cases reaching several
hundred values [15]. Consequently, a system is needed that would link data from remote
monitoring of the Earth’s surface with a small set of actual values describing the state of
the soil or vegetation. Similar systems have recently been built on the basis of artificial
intelligence systems [14] using one or more machine learning models [16,17]. However, the
results of such studies are negatively affected by several factors.

First, the resolution of publicly available satellite imagery does not allow for the
detection of low-dimensional areas of salinity. Second, the variability in environmental
conditions, irrigation, and weather leads to changes that may not be reflected in detail in the
satellite data processing. However, low-cost multispectral data from UAVs can be used to
assess heterogeneous soil properties such as water content and electrical conductivity [18].
Examples of research on the application of multispectral and hyperspectral data from
UAVs are numerous. Some of them are discussed in the next section. In this article,
the authors describe a method of operational mapping of local salinity on the basis of
multispectral images obtained from the UAV. The study was conducted in the southern
part of Kazakhstan. The main contribution of this study is as follows:

• A method for mapping the local salinity of agricultural fields with high resolution
based on multispectral images obtained from UAVs is developed;

• In the course of development, the dataset was prepared, the possibility of apply-
ing machine learning algorithms of different types was investigated, the set of the
model input parameters was optimized, and quantitative and qualitative comparison
of the obtained results with the results of a similar model based on satellite data
was performed.

The work consists of the following sections:

• The next section gives examples of the use of UAVs to assess the salinity of agricultural fields;
• Section 3 describes the methodological scheme of the study, including the processes of

data collection and processing, machine learning models, method of optimization of
the set of input parameters, etc.;

• Section 4 discusses the obtained results;
• In the Conclusion Section, the advantages and limitations of the proposed method are

presented, and further research tasks are formulated.

2. Related Works

UAVs, as a relatively cheap and accurate tool, can be very useful in precision farm-
ing [19]. In recent years, the use of UAVs for the application of herbicides and fertiliz-
ers [20,21], as well as the mapping and classification of cultivated plants, weeds, and plant
diseases [22–24], has been investigated. As a rule, such studies are based on machine
learning methods [25]. One of the factors that reduce the efficiency of agriculture is the
increased content of salts in the soil, which is commonly divided into five or six classes
depending on the effect exerted on the growth of cultivated plants [26–28] (see Table 1).
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Table 1. Threshold values of six classes of soil salinity and its effect on plant growth.

Salinity Class EC1:5 Range for Loams (dS/m) Effect on Crop Growth Types of Crops Growing at a
Given Level of Salinity

Non-saline 0–0.18 Minor All grains except corn, vetch, alfalfa

Slightly saline 0.19–0.36 Yields of salinity-sensitive crops
may decrease

Cotton, timothy, hedgehog,
melilot, wheat

Moderately saline 0.37–0.72 Yields of most crops decrease rutabaga, fodder cabbage,
wheatgrass, sorghum

Highly saline 0.73–1.45 Only salt-tolerant crops can give a
satisfactory yield

sugar beets, sunflowers, western
couch grass, French ryegrass,

awnless bromegrass

Extremely saline 1.46–2.90
Only some of the most

salt-tolerant crops can produce a
satisfactory yield

Extremely saline >2.90

Note. EC1:5 is electrical conductivity of the soil solution (one weight fraction of soil dissolves in five fractions
of water.

A quantitative analysis of soil salinity in the root zone is necessary to assess soil
fertility and to develop measures for land reclamation and restoration. Such studies have
been carried out for decades, based on relatively labor-intensive field studies and satellite
data [3,14,29–31]. Nevertheless, the salinity factor remains difficult to identify quickly,
changing in time and space [32]. UAVs are a valuable tool for operational monitoring of
the Earth’s surface. In this regard, there are studies aimed at recognition and assessment of
salinity using UAV data.

The number of scientific works in this area shows a more than twofold increase from
the end of 2020 (4730) to the beginning of 2023 (9760), which is a sign of a dynamically
developing field of scientific research [33]. The UAV in these studies acts as a platform,
equipped with cameras and sensors whose optimal combination is studied for different
application conditions. For example, in the work [34], the UAV was equipped with a
portable spectrometer with six spectral bands and was used to observe the dynamic change
of soil salinity in the period before and after irrigation. The authors collected 120 soil
samples and calculated 25 spectral covariates, from which the most salinity-sensitive ones
were then selected using selection methods such as Variable Importance in Projection (VIP),
competitive adaptive sampling with re-weighting (CARS), and the genetic algorithm (GA).

The combination of a genetic algorithm for feature selection and a feed-forward neural
network (FFNN) for regression reconstruction showed the best result: the coefficient of
determination R2 was 0.78. The authors found that the higher the initial soil salinity
was, the better the salinity reduction appeared after irrigation. Similarly, a UAV with a
multispectral camera was used to estimate the degree of salinity in a highly saline area
(Huanghekou City, Canli District) [35]. In this case, the support vector machines (SVM)
model showed R2 = 0.835.

The work [36] used a multispectral camera mounted on board a UAV to assess the
quantitative content of salt in the soil. The authors conducted field studies (60 soil samples
in the Shahaoku area in Inner Mongolia, China). The multispectral data were converted
into 22 spectral covariates, from which the most sensitive ones were then selected. The
authors compared three machine learning models random forest regressor (RFR), SVM,
and FFNN. The best results of R2 = 0.835 were obtained for the RFR model with VIP feature
selection method.

A UAV equipped with a multispectral camera was used to estimate the volumetric
water content in soil (VWC) and electrical conductivity (EC) [18]. The authors built a model
based on RFR using a large number of ground-based measurements and found that the
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most useful were those multispectral data that penetrated deeper into the soil cover or
were sensitive to bare soil.

The authors of [37] used multispectral imagery to estimate salt content changes in
the irrigated sunflower fields (Hetao District, Inner Mongolia) during the growth stages
of the plant. The FFNN-based model showed the best results. The authors positioned
the obtained result as a fast and inexpensive method of salinity monitoring. In a similar
paper [38], the authors aimed at effective prediction of soil salinity (electrical conductivity)
using visible and near-infrared (Vis-NIR) spectroscopy. The authors proposed an optimal
band combination algorithm OBCA and used RFR to estimate and map surface soil salinity
using UAV.

In the work [39], UAV multispectral data, correlation analyses, and three machine
learning algorithms were used to construct the soil salinity inversion models. The FFNN
model had the highest inversion accuracy with R2 = 0.774.

The work [40] is one of the first papers devoted to the application of a hyperspectral
camera installed on board a UAV for field salinity assessment. The possibilities of similar
application of UAVs for monitoring the soil cover of three types of agricultural fields
differing in the amount of vegetation were investigated. The random forest regressor
model linked field data and multispectral data.

Recently, a fairly common technique is the combination and comparison of images
obtained from the UAV and satellite images [41,42]. The authors of [43] showed that the
results of calculations of spectral indices of vegetation and soil properties obtained using
UAVs and the Sentinel 2A are comparable. UAVs were more successful in assessing pH,
sand, silt, and CaCO3 compared to the Sentinel 2A. Reference [44] proposes a monitoring
method based on combining UAV multispectral remote sensing data, Sentinel-2A satellite
remote sensing data, and ground-based salinity measurements in the Huanghe River Delta.
The FFNN-based model showed R2 = 0.769. Using this combined method, the authors
found that the area of non-saline and weakly saline lands decreased, while the area of
medium and highly saline soils and salt marshes increased. Moreover, this tendency was
most strongly shown on unused lands and pastures.

In the assessment of the salinity in cultivated plans, there are no reference datasets
based on which the applied methods can be compared. Not only do geographic and weather
conditions differ, but the equipment that is available to researchers also differs. Therefore,
a direct comparison with the results presented in the articles of various researchers is not
entirely justified. For example, the study [44] in total uses more data (UAV multispectral
remote sensing data, Sentinel-2A satellite remote sensing data). However, the result is
somewhat worse than in [35,36], where only UAV-borne multispectral data are used.

Based on the literature review, it can be concluded that the use of a UAV as a low-
altitude platform equipped with a multispectral or hyperspectral camera allows for per-
forming the operational mapping of salinity in agricultural fields. However, the results are
highly dependent on local conditions and the selected machine learning algorithms.

In this paper, we have in a sense continued the research described in the above listed
papers, including the application of different types of machine learning algorithms and the
comparison of results obtained from satellites and UAVs.

3. Method

The methodological scheme of the study consists of the following stages (Figure 1):

• Collection of soil samples and measurement of the electrical conductivity of the
soil solution;

• Flight over the mapped area of the field with the help of a UAV equipped with a
multispectral camera;

• Generation of field maps from overlapping images in different spectral ranges;
• Data pre-processing and calculation of spectral indices based on five spectral camera channels;
• Setting up a machine learning model;
• Salinity map calculation.
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Figure 1. Scheme of research performance.

3.1. Preparation of the Dataset

The data source for training machine learning models was field studies, during which
soil samples were collected and their geographic coordinates were recorded using a GPS
device (Garmin 65) with a positioning accuracy of ≤5 m). The accuracy of the device is
not high, which caused the need for further pre-processing of the data obtained from the
UAV. A total of 80 soil samples were collected in one day (23 May 2022). Samples were
collected at a distance of 20 m from each other in two adjacent fields. Figure 2 illustrates the
location of the fields under the study, the appearance of one of the fields, and the processes
of collecting soil samples.
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Figure 2. Location of the study field and the process of collecting soil samples.

On the same day, a specially designed hexacopter equipped with a MicaSense RedEdge-
MX multispectral camera was used to fly over the field. Figure 3 shows the central part of
the UAV with the installed camera and the path of the UAV movement. See Appendix A for
a table of spectral ranges of the MicaSense RedEdge-MX camera. Note that the underlying
surface in Figure 3b is not related to the date of the research. The real state of the vegetation
at the time of the flight is shown in Figure 2. There are seedlings on the field, but the main
signal was received from the bare soil surface.



Drones 2023, 7, 357 6 of 19

Drones 2023, 7, x FOR PEER REVIEW 6 of 21 
 

 
Figure 2. Location of the study field and the process of collecting soil samples. 

On the same day, a specially designed hexacopter equipped with a MicaSense 
RedEdge-MX multispectral camera was used to fly over the field. Figure 3 shows the cen-
tral part of the UAV with the installed camera and the path of the UAV movement. See 
Appendix A for a table of spectral ranges of the MicaSense RedEdge-MX camera. Note 
that the underlying surface in Figure 3b is not related to the date of the research. The real 
state of the vegetation at the time of the flight is shown in Figure 2. There are seedlings on 
the field, but the main signal was received from the bare soil surface. 

  
(a) (b) 

Figure 3. Installation of a MicaSense RedEdge-MX camera (white camera) on a stabilized UAV sus-
pension (a) and a field coverage map (b). Red dots show the UAVʹs flight path, A2—highway num-
ber. 

The collected soil samples were dried, crushed, and sieved to remove solid insoluble 
fractions and vegetation residues. Then, they were mixed with water in a 1:5 ratio as is 
customary in many cases when measuring the electrical conductivity of a soil solution 
[12,14]. Figure 4 shows the stages of solution settling (a) and the calibration process of the 
Hanna GroLine HI9814 (b), which was used to measure conductivity. The prepared solu-
tions were allowed to settle for at least one day in order to have time to dissolve the 

Figure 3. Installation of a MicaSense RedEdge-MX camera (white camera) on a stabilized UAV sus-
pension (a) and a field coverage map (b). Red dots show the UAV's flight path, A2—highway number.

The collected soil samples were dried, crushed, and sieved to remove solid insoluble
fractions and vegetation residues. Then, they were mixed with water in a 1:5 ratio as is cus-
tomary in many cases when measuring the electrical conductivity of a soil solution [12,14].
Figure 4 shows the stages of solution settling (a) and the calibration process of the Hanna
GroLine HI9814 (b), which was used to measure conductivity. The prepared solutions were
allowed to settle for at least one day in order to have time to dissolve the sparingly soluble
fractions. Appendix B shows the coordinates of the soil samples and conductivity values.
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The electrical conductivity of the solution determines the 6 or lesser number of salinity
classes according to Table 1 [28].



Drones 2023, 7, 357 7 of 19

3.2. Data Pre-Processing

The obtained multispectral images of the field were combined into single maps using
Pix4D [45] tools. Each spectral range corresponds to a separate map (Figure 5).
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Figure 5. Images of the fields obtained in different spectral ranges. From left to right: blue, green,
red, near_red, red_edge.

The resolution of images obtained from the UAV is about 7 cm. The ultra-high spatial
resolution of UAV images may contain noise associated with the presence of shadows
from small clumps of ground, depressions, and elevations. In addition, the accuracy of
coordinate measurement on the surface is more than 1 m. The combination of these factors
led to a significant (more than 20%) decrease in the quality of the salinity prediction based
on machine learning. Similar difficulties were encountered by the authors of [40]. To
improve the quality, several smoothing methods can be applied, for example, Gaussian
Smoothing (GS):

G(x, y) =
1

2πσ 2 e−
x2+y2

2σ2

where σ is the standard deviation of the distribution, and x, y are coordinates.
In our case, the method of averaging image pixel values in the range from 3 to

10 turned out to be useful for improving the prediction quality. In the course of com-
putational experiments, the optimal size of the averaging filter was found, which was
5 × 5 pixels. In other words, we used average pooling with a filter size of 5 × 5 and a step
of 1. Padding with size 2 was used to keep the size of original image. Figure 6 illustrates
the process of applying average pooling to the original image. The pixels of padding are
marked in white. Experiments have shown that the use of average pooling gives some
improvement in the quality of the model compared to GS.
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The obtained data were used to calculate the spectral indices listed in Table 2. To use
the “red_edge” range data, the additional spectral indices are proposed using this range
instead of “nir” (marked with “*”).

Table 2. Spectral indices used as input data for machine learning models.

Spectral Indices Ref.

NDSI = red−nir
red+nir [46]

S1 = blue
red [47]

S2 = blue−red
blue+red [47]

S3 =
green∗red

blue
[47]

SI1 = 2
√

green ∗ red [48]
SI2 = 2

√
green2 + red2 + nir2 [49]

SI3 = 2
√

green2 + nir2 [50]
SI8 = blue ∗ red

green [51]
WI1 = 0.1761∗green + 0.322∗red + 0.3396∗nir [52]

SSRI = nir
2
√

green ∗ red
[53]

NDSIre = red−red_edge
red+red_edge

*

SI3re = 2
√

green2 + red_edge2 *
SSRIre =

red_edge
2
√

green ∗ red
*

Note. * Spectral index uses “red_edge” instead of “nir”.

The calculated values of spectral indices for soil sample collection sites are presented
in Appendix C.

3.3. Machine Learning Models

A wide range of machine learning algorithms, both classical and modern [15], can be
used to build a regression model linking a set of input variables with the salinity value.
Obviously, the application of deep learning models could give good results. However, their
application requires a large set of initial data of the size of thousands and hundreds of
thousands of lines. The available data are not sufficient. The authors are also not aware
of large sets of labeled data obtained from the UAV or pre-trained models of deep neural
networks solving the salinity estimation problem, which would allow for applying the
transfer learning techniques [54] to tune it. For these reasons, the use of deep learning
models is not reasonable. The authors conducted preliminary experiments with boosting
models [55], support vector machines, and, as a reference point (base line) for comparative
analysis, with classical regression algorithms (see Table 3).

Table 3. Machine learning models.

Regression Model Abbreviation References

XGBoost XGB [56]
LightGBM LGBM [57–59]

Random forest RF [60]
Support vector machines SVM [61]

Linear regression LR [62]
Lasso regression Lasso [63]
Ridge regression Ridge [64,65]

Elastic net ElasticNet [66]

To assess the quality of the regression models, accuracy indicators [67] are used,
including the coefficient of determination (R2), the mean square error (MSE), and the mean
absolute error (MAE) (see Table 4).



Drones 2023, 7, 357 9 of 19

Table 4. Quality metrics of regression models.

Accuracy Index Abbreviation Equation Explanation

Determination coefficient R2

R2 = 1− SSres
SStot

SSres =
mk

∑
i=1

(y(i) − h(i))
2

SStot =
mk

∑
i=1

(y(i) − y)
2
, y = 1

mk

mk

∑
i=1

y(i)

where y(i) is the actual value; h(i) is the
estimated value (hypothesis function

value) for the i-th sample; and
mk ∈ m is a part of the training sample

(the set of marked objects).

Mean Absolute Error MAE MAE =
∑n

i=1|y(i)−h(i)|
n

where n is simple size; when evaluating
the performance of the model on the

test set, n is the size of the test set.

Mean squared error MSE MSE = ∑n
i=1 (y(i)−h(i))

n

2

The MLextend library [68,69] was used to optimize the set of input parameters. To
evaluate the models, the method of cross-validation of random permutations (ShuffleSplit)
was used. In this case, the raw data are divided into the training and test samples randomly
in a given proportion (in this case, 80% are training data, and 20% are test data). To ensure
the statistical significance of the result, such splitting was performed 200 times for each
regression model. The obtained values of the estimates were averaged, and the variance
was calculated for them using the statistics library.

4. Results and Discussion

The results of the machine learning models are shown in Tables 5 and 6. Table 6
shows the results of models with the full set of input variables listed in Table 2. Using a
large list of features with a small number of training examples can have a negative effect.
Therefore, as in many similar research studies, we optimized the number of input variables
of the model. Table 6 shows the results obtained with optimized set of features (‘SI1’,
‘SI3’, ‘NDSI’, ‘SSRI’, ‘S1’, ‘S2’, ‘S3’, ‘NDSIre’). The optimization was performed using both
the Sequential Backward Feature Selection (SBS) and Sequential Forward Selection (SFS)
methods of mlextend library. The goal of the optimization was to find a combination of
features that provides the maximum R2 value.

Table 5. Results of machine learning models with the full set of input parameters.

Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

XGB 0.538 0.586 0.663 0.028 0.147 0.02 12.40934
RF 0.577 0.695 0.575 0.026 0.141 0.04 4.963758
LR 0.956 2.684 −0.749 0.094 13.405 6.872 0.112692

Lasso 1.131 1.864 −0.131 0.031 0.403 0.075 0.092753
ElasticNet 1.131 1.864 −0.131 0.031 0.403 0.075 0.08577

LGBM 0.738 1.03 0.384 0.031 0.236 0.037 2.12528
Ridge 0.795 1.141 0.328 0.034 0.302 0.034 0.16456
SVM 0.545 0.587 0.643 0.017 0.103 0.027 0.107743

Table 6. Results of machine learning models with an optimized set of input parameters.

Regressor MAE MSE R2 VarMAE VarMSE VarR2 Duration

XGB 0.514 0.508 0.701 * 0.014 0.051 0.012 65.93539
RF 0.562 0.641 0.597 0.02 0.09 0.037 11.2957
LR 0.808 1.171 0.233 0.03 0.299 0.202 0.165049

Lasso 1.112 1.782 −0.099 0.029 0.317 0.036 0.159441
ElasticNet 1.112 1.782 −0.099 0.029 0.317 0.036 0.164228

LGBM 0.716 0.947 0.421 0.026 0.15 0.024 3.062773
Ridge 0.841 1.2 0.272 0.029 0.237 0.028 0.346673
SVM 0.547 0.604 0.623 0.017 0.078 0.025 0.220766

N.B. varMAE, varMSE, VarR2 are the variances of the obtained estimates, and Duration is the model training
time in seconds (Intel Core i7-10750H, 2.60 GhZ, 32Gb). * The maximum value of R2 is 0.67 when using GS with
parameter σ = 25.
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The results show that the application of the optimized set of features led to a significant
improvement in the quality of the XGB model. Relatively good results can also be obtained
using RF and SVM. This indicates the robustness of the method to changes in the machine
learning model. Salinity mapping results using XGB are shown in Figure 7.
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Figure 8 shows the salinity of the soil cover of the field in black and white. The areas
with increased salinity are highlighted in white. The colored dots show the places where
soil samples were collected. The color of the dot in the figure determines the value of the
measured salinity according to Table 1, so that blue indicates non-saline, green indicates
slightly saline, yellow indicated moderately saline, red indicates highly saline, and crimson
indicates severely saline and extremely saline for loamy soils.
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It can be seen that the values of salinity of soil samples agree well with the received
map of salinity. The map as a whole allows for presenting the processes on the fields with a
high degree of detail.

To compare the quality of field mapping, similar studies were performed using Landsat
8 optical data. Figure 9 shows a section of the land surface mapped by the XGB model
using optical satellite data from 2 April 2022. On the right side of Figure 9 is the map
shown above (Figure 7) at the appropriate scale. The coefficient of determination of the
XGB regressor from the satellite data was 0.54. The resolution of the satellite image is 30 m,
while the resolution of the UAV image is about 7 cm. For this reason, the details of local
salinity in the studied fields are difficult to discern when using satellite data.
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The result of salinity studies may depend on both the type of soil and the geographical
conditions for the formation of salt deposits. The reliability of the proposed method is
based on the following assumptions:

(1) The entire region under consideration is located on the sloping foothill plain of
the Zailiysky Alatau ridge, formed by the alluvial fans of the river system. This somewhat
evens out the soil differences. Soil waters are formed by surface/underground runoff from
a mountain range are initially fresh. Salinization is confined to small salt lenses that exist
in the upper part of the sedimentary cover and the lower parts of small river basins. One
of the peculiarities of salinization of the region is the fixedness of places of pronounced
salinity, the level of which varies every year depending on the water content of the year
(less in high water, more in low water). Therefore, the characteristic relationship between
the soil types and their salinity in this region is not expressed as clearly as in the plains
with saline groundwater (for example, the oases of Central Asia).

(2) The spectral characteristics depend on the composition of the soil. The color factor
of mineral components and the content of humus influence affects it. However, fields are
organized only in places with a developed layer of fertile soil in which mineral components
and humus do not have significant variations.

5. Conclusions

The performed study leads to the conclusion that mapping the salinity of cultivated
fields using UAVs can be more accurate and more detailed than using publicly available
satellite images. The sufficiently high accuracy, the possibility of using UAVs on cloudy
days, and the high speed of obtaining maps make such a method of mapping very attractive.
Essentially, the map can be obtained within 1 day if the technological processes of soil
sample processing are not taken into account.

However, it should be noted that this method, as well as other methods of this kind,
has limitations:

1. Dependence on weather conditions, field humidity, illumination, presence of plants, etc.;
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2. UAV use is limited by weather conditions. Rain and strong winds make overflights
ineffective or impossible.

In addition, this particular study also has limitations:

3. A small number of ground measurements in one single day;
4. One kind of soil with little vegetation. However, for example, Reference [70] indicates

that salinity estimation models may be different for bare ground and vegetated areas.

Based on the existing limitations of the current study, we plan the following for the future:

5. Additional verification of the method is required depending on the changes in weather
conditions, soil moisture, presence of plants, etc.;

6. It is necessary to expand the area of field studies of fields and soils essentially different
from those mentioned in this work. In particular, it is useful to carry out the analysis
on sandy soils, which are very typical for the southern regions of Kazakhstan;

7. In general, despite the noted limitations, the described method of mapping of salinity
of cultivated fields is quite accurate, operational and low-cost. Its wide application in
the practice of precision farming requires relatively little effort to develop specialized
software and unmanned flying platforms.

Author Contributions: Conceptualization, R.M. and Y.K.; methodology, R.M. and A.T.; software,
R.M. and Y.K.; validation, A.T., E.Z. and V.L.; investigation, R.M., L.T., A.T. and A.S.; resources, R.M.,
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have read and agreed to the published version of the manuscript.
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Appendix A

Table A1. Table of spectral ranges of the multispectral camera MicaSense RedEdge-MX [71].

File Suffix Band Name Center Wavelength
(nm) Bandwidth (nm)

1 Blue 475 32
2 Green 560 27
3 Red 668 14
4 Red Edge 717 12
5 Near IR 842 57

Notes: (1) The Band Name tag contains the human-readable name (Blue, Green, etc.); (2) The Central Wavelength
tag contains the center wavelength of the filter for that band in nanometers (475, 560, etc.); (3) The Wavelength
FWHM tag contains the bandwidth of the filter (32, 27, etc.).

https://www.dropbox.com/sh/9rlcdbb6fcbawwq/AABMc_TTniUAaoUftleFob8wa?dl=0
https://www.dropbox.com/sh/9rlcdbb6fcbawwq/AABMc_TTniUAaoUftleFob8wa?dl=0


Drones 2023, 7, 357 14 of 19

Appendix B

Table A2. Results of laboratory testing of soil samples.

Sample Number X Y Elco50

1. 265,440.44 4,828,020.66 0.37
2. 265,453.74 4,828,017.08 1.59
3. 265,462.59 4,828,013.66 0.74
4. 265,471.53 4,828,010.34 0.82
5. 265,478.13 4,828,007.00 0.58
6. 265,486.98 4,828,003.57 0.51
7. 265,495.84 4,828,000.15 0.77
8. 265,506.85 4,827,993.65 2.6
9. 265,513.44 4,827,990.30 2.33
10. 265,524.56 4,827,986.80 2.92
11. 265,533.53 4,827,986.49 3.24
12. 265,544.64 4,827,982.99 2.45
13. 265,551.43 4,827,982.75 2.51
14. 265,562.47 4,827,979.36 4.11
15. 265,569.25 4,827,979.12 3.28
16. 265,578.11 4,827,975.70 2.97
17. 265,589.33 4,827,975.31 0.43
18. 265,657.99 4,828,269.49 3.23
19. 265,661.22 4,828,297.17 4.68
20. 265,656.91 4,828,303.44 2.1
21. 265,655.08 4,828,315.85 1.78
22. 265,653.12 4,828,322.14 1.54
23. 265,646.66 4,828,331.60 2.16
24. 265,642.65 4,828,344.08 2.68
25. 265,638.12 4,828,344.24 4.65
26. 265,633.90 4,828,350.62 4.22
27. 265,629.70 4,828,359.99 2.86
28. 265,627.66 4,828,366.29 4.27
29. 265,621.27 4,828,375.74 5.11
30. 265,575.63 4,827,969.56 0.15
31. 265,577.57 4,827,960.26 0.82
32. 265,579.51 4,827,950.97 2.23
33. 265,581.25 4,827,938.56 1.15
34. 265,581.04 4,827,932.34 1.95
35. 265,582.98 4,827,923.04 1.67
36. 265,584.91 4,827,913.63 1.94
37. 265,586.74 4,827,901.23 1.61
38. 265,590.97 4,827,894.96 1.68
39. 265,592.80 4,827,882.56 2.17
40. 265,592.47 4,827,873.23 1.73
41. 265,596.68 4,827,863.85 1.48
42. 265,598.53 4,827,854.55 2.4
43. 265,600.47 4,827,845.15 1.65
44. 265,602.41 4,827,835.85 0.78
45. 265,604.24 4,827,823.44 1.09
46. 265,608.35 4,827,813.96 0.65
47. 265,610.18 4,827,801.55 0.54
48. 265,612.12 4,827,792.25 0.8
49. 265,614.06 4,827,782.95 0.41
50. 265,613.74 4,827,773.62 0.8
51. 265,617.86 4,827,764.25 0.95
52. 265,608.89 4,827,764.56 1.11
53. 265,599.71 4,827,758.66 0.66
54. 265,588.38 4,827,756.05 0.3
55. 265,579.31 4,827,753.25 0.39
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Table A2. Cont.

Sample Number X Y Elco50

56. 265,568.08 4,827,753.65 0.33
57. 265,556.75 4,827,750.93 0.52
58. 265,559.33 4,827,760.07 0.24
59. 265,557.39 4,827,769.48 0.22
60. 265,555.56 4,827,781.88 0.21
61. 265,551.44 4,827,791.26 0.22
62. 265,549.51 4,827,800.67 0.18
63. 265,549.83 4,827,809.89 0.25
64. 265,547.89 4,827,819.18 0.41
65. 265,546.04 4,827,828.59 0.34
66. 265,539.68 4,827,841.15 0.32
67. 265,540.12 4,827,853.48 0.52
68. 265,536.00 4,827,862.86 0.5
69. 265,534.17 4,827,875.26 0.47
70. 265,532.23 4,827,884.67 0.73
71. 265,530.29 4,827,893.97 0.47
72. 265,528.54 4,827,906.37 0.51
73. 265,524.34 4,827,915.75 0.44
74. 265,522.41 4,827,925.16 0.53
75. 265,520.47 4,827,934.46 2.64
76. 265,518.61 4,827,943.75 4.08
77. 265,514.52 4,827,956.24 4.78
78. 265,512.58 4,827,965.65 3.82
79. 265,510.72 4,827,974.94 2.14
80. 265,508.79 4,827,984.24 2.23

Note. X,Y—UTM Coordinates (WGS 84/UTM zone 44N), elco50—electrical conductivity of soil solution (mS/cm)
in a 1:5 ratio (1weight fraction of soil, 5 fractions of water).

Appendix C

Table A3. Results of laboratory testing of soil samples.

No. X Y SI1 SI2 SI3 SI8 WI1 NDSI SSRI S1 S2 S3 NDSIre SI3re SSRIre

1 1581 7212 31,619.53 50,272.68 38,265.54 26,855.87 23,672.41 0.18 0.72 0.77 −0.13 39,585.04 −0.03 46,161.49 1.09
2 1768 7262 36,902.67 57,748.47 42,849.27 33,159.49 26,970.29 0.23 0.66 0.78 −0.12 45,200.5 −0.02 53,732.99 1.1
3 1893 7310 32,921.36 51,333.71 38,178.53 29,576.39 23,895.56 0.23 0.65 0.79 −0.12 39,813.86 −0.02 47,608.32 1.08
4 2019 7357 33,010.39 51,349.65 38,085.48 29,752.05 23,862.3 0.24 0.64 0.79 −0.12 39,872.31 −0.02 47,618.25 1.08
5 2111 7404 30,719.88 48,504.08 36,171.15 27,892.53 22,796.44 0.2 0.69 0.78 −0.12 37,439.93 −0.03 45,022.79 1.12
6 2236 7452 33,226.79 52,053.5 38,450.84 31,387.22 24,344.2 0.23 0.67 0.8 −0.11 39,222.96 −0.01 47,736.48 1.08
7 2360 7500 35,348.55 56,073.35 41,414.79 34,960.26 26,467.1 0.2 0.71 0.81 −0.11 40,876.01 0 50,395.36 1.08
8 2515 7592 35,662.25 58,124.9 44,140.12 36,537.35 27,808.53 0.14 0.8 0.86 −0.08 39,142.25 0 50,696.74 1.06
9 2608 7639 33,049.84 55,088.7 42,765.54 34,290.42 26,560.38 0.09 0.88 0.89 −0.06 35,166.48 0 46,729.64 1.05
10 2764 7688 31,692.16 54,250.04 42,231.75 34,138.8 26,423.22 0.06 0.95 0.87 −0.07 33,965.65 −0.01 45,455.36 1.09
11 2891 7693 31,623.7 54,135.65 42,211.09 34,733.63 26,361.6 0.06 0.95 0.89 −0.06 33,077.24 0 45,108.26 1.08
12 3047 7742 33,836.17 57,455.19 44,864.34 36,660.98 27,888.77 0.06 0.93 0.91 −0.05 35,140.63 −0.01 48,582.3 1.08
13 3142 7745 33,180.1 56,154.1 44,101.52 37,121.19 27,192.78 0.06 0.92 0.97 −0.01 32,551.17 −0.02 47,851.68 1.08
14 3298 7793 28,302.42 51,951.66 42,764.85 32,243.49 25,499.74 −0.06 1.17 1.01 0 26,986.63 −0.06 43,143.48 1.18
15 3393 7796 31,830.62 58,171.2 47,941.44 36,816.9 28,514.52 −0.05 1.16 1.04 0.02 29,483.93 −0.07 48,670.95 1.19
16 3518 7844 28,809.65 50,953 41,329 32,690.37 24,870.42 −0.01 1.06 1.03 0.01 27,167.72 −0.05 43,056.26 1.14
17 3676 7850 36,652.02 62,353.43 50,182.58 39,482.78 30,076.59 0.03 0.95 1.05 0.02 34,690.05 −0.01 52,410.36 1.03
18 4641 3712 17,135.32 36,037.67 31,811.91 12,363.02 17,563.23 −0.22 1.56 0.75 −0.14 23,191.42 −0.18 30,048.8 1.43
19 4687 3322 18,866.38 33,220.33 26,361.13 17,574.29 16,272.7 0.01 1.04 0.76 −0.14 23,254.51 −0.02 27,285.59 1.1
20 4626 3234 22,691.57 38,676.51 29,564 22,500.47 18,851.16 0.08 0.93 0.75 −0.14 27,636.87 −0.01 32,624.08 1.11
21 4600 3060 33,203.87 52,824.18 37,969.63 37,625.6 25,006.89 0.22 0.7 0.84 −0.09 35,845.31 0.05 44,901.57 1.01
22 4573 2971 32,427.78 51,010.03 36,666.08 38,304.16 23,965.03 0.24 0.67 0.9 −0.05 32,832.52 0.04 44,053.07 1
23 4482 2838 32,921.44 52,187.91 37,989.29 40,089.89 24,642.72 0.22 0.7 0.95 −0.03 31,938.03 0.03 45,087.98 1.01
24 4426 2662 40,692.84 63,848.23 46,228.53 48,593.76 29,935.59 0.24 0.66 0.94 −0.03 39,912.92 0.02 56,583.71 1.04
25 4362 2660 38,942.71 62,143.67 46,148.39 45,250.8 29,435.07 0.19 0.73 0.95 −0.02 38,279.15 0.03 53,260.41 1
26 4302 2571 39,133.77 63,776.54 48,770.95 44,064.17 30,479.83 0.13 0.8 0.97 −0.01 38,326.87 0.04 52,993.42 0.96
27 4243 2439 34,790.93 57,240.31 44,413.74 36,988.37 27,424.92 0.11 0.84 0.95 −0.03 35,250.87 0.01 48,600.75 1.01
28 4215 2350 35,444.48 59,136.38 46,432.02 37,978.31 28,459.76 0.08 0.88 0.97 −0.01 35,314.34 0 50,214.56 1.03
29 4125 2217 35,451.08 58,261.78 45,127.83 38,670.38 27,907.62 0.11 0.83 0.97 −0.01 35,115.12 0.03 48,569.08 0.98
30 3483 7931 34,922.95 62,428.28 50,977.04 39,099.33 30,509.75 −0.03 1.09 1.02 0.01 33,213.64 −0.05 52,285.2 1.14
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Table A3. Cont.

No. X Y SI1 SI2 SI3 SI8 WI1 NDSI SSRI S1 S2 S3 NDSIre SI3re SSRIre

31 3510 8062 34,775.61 62,081.32 50,418.22 39,061.78 30,373.29 −0.02 1.09 0.99 0 33,590.23 −0.04 51,539.51 1.13
32 3537 8192 36,464.78 65,414.32 53,606.98 40,862.6 31,967.33 −0.03 1.1 1.03 0.02 34,391.46 −0.05 54,472.73 1.13
33 3562 8367 35,937.93 65,005.76 53,847.66 40,009.17 31,731.84 −0.05 1.13 1.07 0.03 33,146.86 −0.06 54,514.4 1.15
34 3559 8454 32,990.46 60,012.68 49,807.56 36,945.76 29,319.25 −0.06 1.14 1.07 0.03 30,334.44 −0.07 50,175.57 1.16
35 3586 8585 35,196.92 65,087.31 54,362.26 39,155.04 31,856.38 −0.08 1.19 1.06 0.03 32,718.71 −0.07 53,919.28 1.17
36 3613 8717 33,364.48 62,219.95 52,621.7 35,825.76 30,368.09 −0.1 1.22 1.09 0.04 30,767.77 −0.08 51,519.84 1.17
37 3639 8892 32,155.03 59,371.89 50,182.94 33,485.06 28,915.25 −0.09 1.19 1.08 0.04 30,063.99 −0.07 48,993.18 1.14
38 3699 8980 33,462.17 62,456.36 52,956.81 35,364.47 30,456.96 −0.1 1.22 1.09 0.04 31,002.1 −0.08 51,433.51 1.16
39 3724 9155 35,861.23 64,369.39 53,239.48 38,386.89 31,369.61 −0.05 1.11 1.04 0.02 34,099.58 −0.04 52,841.87 1.09
40 3720 9286 34,615.44 62,465.31 51,272.79 37,694.58 30,560.08 −0.04 1.12 0.99 0 33,771.88 −0.01 49,719.5 1.06
41 3779 9418 35,286.84 63,214.13 51,761.6 37,214.93 30,887.77 −0.03 1.1 0.97 −0.02 35,382.62 −0.01 50,249.41 1.04
42 3805 9549 34,568.82 62,491.73 52,043.17 35,215.85 30,441.52 −0.06 1.13 1.02 0.01 33,982.58 −0.01 49,512.87 1.03
43 3832 9681 35,040.66 63,653.7 53,345.37 34,851.16 30,974.45 −0.07 1.14 1.02 0.01 34,606.16 −0.01 50,232.72 1.02
44 3860 9812 34,782.09 63,253.85 53,167.36 34,752.69 30,751.78 −0.07 1.14 1.04 0.02 33,789.66 −0.01 49,770.21 1.01
45 3885 9986 38,120.35 69,017.37 57,868.49 36,992.55 33,545.25 −0.07 1.13 1.01 0.01 38,241.08 −0.01 54,450.09 1.01
46 3943 10,120 38,509.9 69,106.52 58,017.35 37,339.58 33,476.99 −0.06 1.1 1.05 0.02 37,753.44 −0.01 54,989.23 0.99
47 3969 10,294 35,800.91 63,791.15 53,538.07 33,858.06 30,831.76 −0.06 1.08 1.04 0.02 35,530.28 −0.01 50,946.17 0.98
48 3996 10,425 35,597.9 63,462.99 53,268.57 33,265.45 30,677.29 −0.06 1.08 1.03 0.01 35,773.19 0 50,621.33 0.98
49 4023 10,556 38,549.36 67,230.32 56,317.83 35,299.47 32,249.99 −0.03 1.02 1.06 0.03 38,193.69 0 54,576.98 0.95
50 4019 10,687 34,644.84 61,485.42 51,746.9 31,698.76 29,633.54 −0.05 1.07 1.04 0.02 34,787.35 0 49,270.19 0.97
51 4077 10,819 38,040.29 65,878.63 55,051.47 34,430.74 31,542.16 −0.02 0.99 1.05 0.03 38,027.89 0 53,699.07 0.94
52 3951 10,814 34,619.85 61,563.29 51,782.52 31,708.75 29,701.74 −0.06 1.08 1.03 0.01 34,962.26 0 49,198.57 0.97
53 3822 10,897 39,478.28 70,041.44 58,892.43 36,511.13 33,769.16 −0.05 1.07 1.04 0.02 39,371.13 0 56,084.38 0.97
54 3662 10,934 39,081.14 68,990.71 57,838.46 36,107.53 33,247.39 −0.05 1.05 1.04 0.02 39,172.71 −0.01 55,624.08 0.97
55 3535 10,973 40,419.78 71,198.95 59,803.04 37,001.03 34,249.42 −0.05 1.05 1.05 0.02 40,347.18 −0.01 57,815.36 0.98
56 3377 10,968 35,463.97 61,632.84 51,616.5 32,955.44 29,522.39 −0.03 1 1.08 0.04 34,420.53 0 50,266.59 0.95
57 3217 11,006 36,481.61 64,096.52 54,003.98 33,718.02 30,749.1 −0.05 1.04 1.09 0.04 35,350.05 −0.01 52,069.96 0.96
58 3254 10,878 35,799.66 62,853.58 52,727.18 33,399.75 30,213.9 −0.04 1.04 1.07 0.03 35,042.66 0 50,885.24 0.96
59 3226 10,745 37,759.88 65,464.93 54,838.59 34,849.58 31,319.19 −0.03 1 1.09 0.04 36,682.98 0 53,337.31 0.94
60 3201 10,571 40,116.97 70,115.71 58,824.09 37,563.27 33,638.85 −0.04 1.02 1.09 0.04 38,759.64 0 56,880.92 0.95
61 3143 10,439 37,017.86 65,115 54,618.94 35,625.86 31,326.68 −0.04 1.04 1.1 0.05 35,275.89 0 52,314.1 0.95
62 3115 10,307 38,557.66 67,637.52 56,604.5 37,226.06 32,541.46 −0.04 1.03 1.09 0.04 36,822.72 0.01 54,252.12 0.95
63 3120 10,177 39,821.81 70,591.36 59,015.55 38,778.07 34,116.75 −0.05 1.07 1.06 0.03 38,689.51 0 56,617.9 0.98
64 3093 10,046 39,456.76 70,135.38 58,423.89 38,395.82 33,982.11 −0.05 1.08 1.02 0.01 39,213.12 0 55,857.15 0.98
65 3067 9914 38,455.8 68,614.93 57,187.06 38,477.1 33,280.44 −0.05 1.09 1.04 0.02 37,363.75 −0.01 54,696.65 1
66 2977 9737 41,507.14 74,130.67 61,961.22 41,722.18 35,923.95 −0.05 1.09 1.07 0.03 39,695.05 −0.01 59,209.85 1
67 2983 9564 43,112.79 76,763.88 63,652.19 44,378.2 37,283.02 −0.04 1.08 1.04 0.02 41,486.4 0 61,252.62 1
68 2925 9432 39,722.92 72,508.87 60,892.84 40,011.76 35,301.2 −0.08 1.15 1.04 0.02 38,728.58 −0.03 57,807.88 1.05
69 2900 9257 40,703.27 72,467.76 59,899.03 42,870.42 35,236.98 −0.04 1.08 1.05 0.02 38,807.26 −0.01 58,146.09 1.02
70 2872 9125 36,047.26 64,656.78 53,378.15 38,254.48 31,522.96 −0.04 1.1 1.02 0.01 34,800.43 −0.02 51,999.33 1.05
71 2845 8994 40,354.28 70,899.66 58,008.27 43,454.24 34,445.19 −0.02 1.04 1.04 0.02 38,242.59 −0.01 57,951.21 1.04
72 2820 8820 40,181.84 68,540.23 55,148.86 43,967.28 33,100.71 0.03 0.95 1.05 0.03 37,672.72 −0.01 57,608.12 1.04
73 2761 8688 37,574.88 62,579.63 49,616.42 41,335.21 30,017.73 0.07 0.88 1.05 0.03 35,186.03 −0.02 54,185.48 1.05
74 2734 8555 37,664.32 61,185.91 47,313.63 41,928.11 29,128.25 0.13 0.8 1.02 0.01 35,898.03 −0.02 54,462.54 1.07
75 2707 8425 38,269.51 61,302.54 46,459.25 42,898.79 29,036.6 0.17 0.75 0.98 −0.01 37,286.34 −0.02 55,150.67 1.08
76 2681 8294 37,392.37 60,150.85 45,227.45 42,530.39 28,597.92 0.17 0.76 0.95 −0.02 36,975.98 −0.01 53,642.44 1.08
77 2623 8118 29,107.63 47,998.65 37,013.66 32,611.44 23,050.11 0.11 0.84 0.97 −0.02 28,635.93 −0.02 42,260.48 1.1
78 2596 7986 30,821.13 49,796.85 38,004.57 33,595.66 23,687.6 0.15 0.78 0.96 −0.02 30,818.83 −0.01 44,070.66 1.06
79 2570 7855 31,888.41 52,176.3 40,028.92 33,969.96 24,977.03 0.12 0.82 0.92 −0.04 32,971.84 0 45,374.85 1.06
80 2543 7724 35,226.8 57,560.92 44,143.08 36,437.63 27,536.38 0.13 0.81 0.9 −0.05 37,451.61 0 49,713.54 1.04

Note. X,Y—coordinates of sample collection points in pixels.
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